fbpx
Connect with us

Community

The Data: Diving for Antibiotics

Marcus Rose and Emily Addington are giving new meaning to getting one’s fix from diving. The two are actively engaged in collecting underwater biological samples from a seawater loch in Scotland, in an attempt to discover potential new antibiotics. Their venture, Project Baseline Loch Long, works closely with researchers from the Institute of Pharmacy and Biomedical Sciences at the University of Strathclyde. Fellow citizen scientists can read about their adventures here. Is there a Project Baseline in your diving?

Published

on

By Marcus Rose and Emily Addington

Project Baseline Loch Long (PBLL) team members are constantly on the lookout for opportunities to collaborate with conservation and scientific research organizations, and 2019 is already looking promising. Loch Long is a saltwater sea loch approximately 20 miles long and around one to two miles wide with depths ranging from six to 56 meters. The loch is the host to vast sea life ranging from plant life, small crustaceans, fish, and eels to large marine mammals such as porpoise and seals. One of our regular divers is a postgraduate student at Strathclyde University, and his links with the university have introduced PBLL to Diving for Antibiotics.

Diving for Antibiotics uses citizen science divers to collect underwater samples in an attempt to discover uncharacterized species of actinobacteria. Actinobacteria are found ubiquitously in soil across terrestrial, fresh-aquatic, and marine environments where they produce antimicrobial secondary-metabolites to compete with other microorganisms. These secondary-metabolites constitute approximately 70% of naturally derived antibiotics in clinical use today, as well as much of the anti-cancer, anti-anthelmintic, anti-viral, antihypertensive, and antifungal compounds. However, novel antibiotic discovery is now rare, as terrestrial strains of actinobacteria have been extensively explored and exploited.

Photo by Marcus Rose.

Unlike terrestrial sources, the marine biosphere has been relatively undersampled and holds enormous potential for the discovery of new actinobacteria species, which may produce novel antibiotics. In 2009-2010, 2,014 novel natural products were discovered from marine environments and in 2010, 300 previously unknown natural products were isolated from marine microorganisms and species of phytoplankton. In summary, the ocean holds great potential for the discovery of new antibiotics, and citizen divers are a useful and economic way of collecting samples.

Antimicrobial resistance (AMR) is predicted to become a leading cause of death globally by 2050. By current estimates there are approximately 700,000 deaths per year associated with antibiotic-resistant bacterial infections, predicted to rise to 10 million by 2050. As antibiotics in clinical practice today become ineffectual, it is critical that new antibiotics become available.

Photo by Emily Addington.

In order to generate interest in this collaboration opportunity, interested divers who apply will be sent a collection box containing a leaflet summarizing what antibiotics are, how they are discovered, why AMR is a global crisis, and finally, the importance of marine microorganisms in the future of antibiotic discovery. A guide to collecting a sample, along with a list of required information such as coordinates of the sampling location, will also be sent.

The divers will be given a sterile collection tube with their own personal sample number, and a prepaid postage label allowing them to return their sample by post to the University of Strathclyde. They will then be able to use their personal sample number to track the progress of their sample on the Instagram: @diveforantibiotics. This Instagram channel will feature photographs of the isolates and describe how the bacteria are isolated, sequenced, and tested for production of bioactive metabolites. At the end of the project, participating divers will be invited to Strathclyde Institute of Pharmacy and Biomedical Sciences for an afternoon of talks about AMR and antibiotic discovery given by Ph.D. students.

The Project Baseline Loch Long team is extremely excited about this latest collaboration, and we look forward to tracking the progress of collected samples. We’ll send a report once our samples have been submitted and their fate is known.


Marcus Rose is a GUE instructor, passionate project diver, and is joint project manager (with Ryan Mcshane) for the Project Baseline Loch Long site. Teaching mostly on the west coast of Scotland, he also enjoys building collaborations with local scientists and conservation groups, and travelling to cave dive. His recent participation in the Sardinia Cave Project was a highlight for him.


Emily Addington is an EPSRC-funded Ph.D. student in molecular microbiology at the University of Strathclyde. Her research focuses on the evolution of bacterial virulence via investigations of the Actinobacteria Streptomyces coelicolor. As part of a Microbiology Society funded project, Emily is also interested in discovering novel marine actinobacteria with potential anti-microbial secondary metabolites and in public outreach and engagement. Emily holds a bachelor’s degree in biological science and a Master of Research in biomolecular science from the University of East Anglia, England.

Community

Brits Brew Beer Booty

What do you get when you combine British divers’ proclivity for shipwreck exploration with their strong affinity for beer? A tasty treasure hunt on the “Wallachia” that resulted in swilling 126-year old reconstituted British beer. GUE Scotland’s detective chief inspector Andy Pilley recounts the tale.

Published

on

By

by Andy Pilley
Images courtesy of
A. Pilley

Header Image: GUE Scotland’s brewmeisters enjoying their brew (L to R) Top: Owen Flowers, Andy Pilley, Wayne Heelbeck. Middle: Steve Symington, A. Pilley, O. Flowers, Bottom: W. Heelbeck, Sergej Maciuk, S. Symington

“Give my people plenty of beer, good beer, and cheap beer, and you will have no revolution among them.”

Queen Victoria

I never thought when I started diving 10 years ago, that one day I would be able to sit down for a pint of beer with the team from GUE Scotland recreated from a brew that has been hidden under the waves for 126 years. Let me explain.

The Wallachia was a single screw cargo steamer that was owned by William Burrell & Son of Glasgow, and employed on regular trips between Glasgow and the West Indies. On 29th September, 1895 she left Queen’s Dock, Glasgow at 10am bound for Trinidad and Demerara. On board was a valuable general cargo including whisky, gin, beer, acids, glassware, and earthenware plus building materials and footwear. By 1pm that afternoon she had settled on the seabed of the Clyde Estuary after colliding with another ship in a fog bank, she was forgotten until 1977 when a local sub-aqua club rediscovered the wreck site.

The wreck of the Wallachia lies on an even keel in approximately 34 metres of water on a sandy seabed. The wreck itself is largely intact and has six holds in total, three forward and three aft. In the rearmost hold there are thousands of bottles of beer, some still inscribed with the name of the maker, McEwans of Glasgow. This is where myself and the team from GUE Scotland enter the story.

The Wreck of the Wallachia 

The Wallachia is one of the more accessible sites on the west coast of Scotland, where we carry out most of our diving. Depending on weather and tidal conditions, visibility on the wreck can be +10m/33 ft on a very good day or less than 2m/6 ft if there has been a lot of rain due to the amount of particulate in the water. Other elements to consider are the tide as this can vary in its intensity, as well as surrounding boat traffic. The wreck lies in close proximity to a ferry route and care must be taken not to dive when the ferry is closeby. However despite the challenges, the wreck is very rewarding and offers a diver plenty of places to explore and items to look at. 

The main point of interest for most has been the rearmost hold, where the bottles of whisky and beer were stored. The majority of the whisky was removed in the 1980’s however a few bottles can be found on occasion, depending where you look. What remains are thousands of bottles of beer, still with the corks and contents intact. Over the course of 2018 & 2019, the team at GUE Scotland dived on the wreck and recovered a number of bottles from the hold. 

After a chance discussion with a friend at dinner one night, I was given contact details for a company called Brewlab, which is based in Sunderland in the north east of England. Brewlab specialise in the provision of specialist brewing training, as well as laboratory services such as quality assurance, product development, chemical/microbiology testing as well as long term research options. I made contact with Keith Thomas, the Director of Brewlab, to discuss whether he would be interested in analysing the beer and investigating whether it could be recreated. Needless to say the proposal piqued his interest and arrangements were made for the bottles to be shipped to his lab.

Unbeknownst to me, the recovery of historical beers is rare, due to various sources of degradation/contamination which can affect any residual microbial cells and chemical components left in the beer that were used as part of the brewing process. So these samples are a valuable source of information on past brewing and microbiology. Over the course of 2019/2020, Keith and I kept in regular contact over the progress of the investigations and the full analysis of the beer has recently been published.

A Brewing Interest

Between 1850 and 1950, the application of scientific principles to brewing was becoming increasingly prevalent and microbiology was playing an increasingly important role. A pertinent issue in brewing microbiology around 1900 was the application of pure Saccharomyces yeast cultures developed by Hansen at the Carlsberg laboratory in 1888. These were readily adopted by continental breweries as providing more controlled production and purer beers. Application to UK brewing was, however, less positively received, in part because of the belief that British beers possessed particular flavours arising from mixed yeast cultures and, specifically, the involvement of Brettanomyces species. This was especially believed to be essential for the character of ‘stock’ ales which were matured for extended periods.

While a number of breweries did try pure culture yeasts, UK brewing was resistant to change and, with the intervention of World War I, retained its indigenous yeast cultures. Since the 1940’s a more biotechnological approach to fermentation demonstrated the value of pure culture and was progressively applied to the larger breweries developing at that time. 

During the formative period of brewery microbiology after Pasteur, brewing yeast were identified as Saccharomyces species based on morphological features of shape, filamentous propensity and spore characteristics. Non brewing, ‘wild’ yeast was recognised and termed ‘Torula’ if non-sporulating. Of these Brettanomyces strains were identified as contributing important character to stock ales. It is also clear from brewing texts that bacteria were recognised as spoilage organisms in beer, as had been initially demonstrated by Pasteur in 1863. These species were mostly categorised as bacilli and typically portrayed as rods and associated with sarcina sickness – generally producing sourness. Some studies, nevertheless, identified lactic acid bacteria as indigenous components of standard beers.

Contemporary breweries are increasingly interested in using novel microbiology, either unconventional yeast strains or mixes of species and strains for sour and natural products. Identifying the specific strains and species of yeast and bacteria present in Victorian and Edwardian beers is directly relevant to this and has particular value if cultures of authentic microorganisms can be retrieved. Reports of retrieved historic brewery microbiology are limited but hold interesting promise for identifying novel microorganisms.

The specific parameters of the analysis are contained in a published research paper, Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing.”

As I mentioned, the primary objective of the analysis was to confirm whether detail could be provided on the original brewing ingredients and the fermentation microbiology. The analysis confirmed the use of Brettanomyces/Dekkera bruxellensis and Debaryomyces hansenii, which are brewing and fermentation yeasts respectively. The presence of Debaryomyces is interesting as this genus has not been noted as a historic feature of historic brewing, but has been identified in spontaneous fermentations, for example in Belgian lambic beers. Although the strain was reported to the brewing industry in 1906, it has not featured as a major contributor to beer fermentations since.



The analysis has also provided relevant information of the beer character and has confirmed that the beer recovered from the Wallachia was a stout, close to style expectations of the time and had an alcohol content of c. 7.5%. The colour gravity was high, resulting in a much darker beer however a much lower level of bitterness. Again this was typical style of the time and differs from other modern stouts.

More interestingly is the presence of various types of bacteria, which will likely have been picked up during the brewing process. The table below lists these for reference. Needless to say, historic brewing was not a sterile process in comparison to modern methods!

Bacillus licheniformisPlant and soil bacterium
Finegoldia magnaCommensal skin bacterium
Fusobacterium sp.Possible pathogenic bacterium
Kocuria roseaPossible urinary tract pathogen
Mogibacterium pumilumPossible oral cavity bacterium
Shigella sonneiEnteric pathogen
Staphylococcus epidermidisCommensal skin bacterium
Stenotrophomonas maltophiliaSoil bacterium
Varibaculum cambriensePossible pathogenic bacterium

Table 1: The bacteria found in the Wallachia beer bottles

Due to the relatively stable conditions on the wreck, being in near darkness and at a relatively cold temperature (between 6º–14ºC/43º-57ºF depending on the time of year), the live yeast structures within the beer were protected from sources of stress and allowed them to survive over the past 126 years. Luckily, Keith was able to extract these samples and begin to recultivate the yeast, specifically the Debaryomyces, with the hope of being able to rebrew the beer.

Cheers Mates

Just before Christmas, I finally received word from Keith that he had completed a trial brew and seven bottles of the brew were on their way to me. A few excitement laden days later and a nondescript box arrived at my office with the beer inside. I called the guys on our Facebook group chat to show them the case and got each bottle packaged up and sent out to them. 

A few days later, once everyone had received their sample we got together again to try the samples. There was an air of excitement after the two years it had taken us to get to this point, the most anticipated pint ever! I’m no expert in the flavour profiles of beer so you will have to forgive me for my relatively basic analysis. In summary, I got flavours of coffee and chocolate and there was a relatively low level of carbonation, which made it very drinkable. The rest of the team got similar flavours, the only complaint being there wasn’t more to try!

There will of course be slight differences in flavour since we don’t normally add the bacteria listed above as ingredients. However, the recipe we have is as close as we can make it to the original stock version.

The next steps for the project are to carry out further investigation on the characteristics of the Debaryomyces yeast strain in order to determine their suitability for fermentation and potential use in future brewing production. We are making approaches to various commercial breweries in order to discuss future commercialisation of the recipe and produce the brew on large scale. With the story behind the original recipe, we’re hopeful that the provenance would be a key selling point to consumers. It is my hope that the recovery of these samples will open up new possibilities for different types of beers to be developed, and offer something different for beer enthusiasts to try.

I have also found out that there are other types of beer to be found on the wreck, specifically an IPA style. Once we’re allowed to begin diving again, I am hoping to return to the Wallachia and recover some of these bottles so we can carry out the same analysis and keep the project moving forward.

In the mean-time, cheers!

Additional Resources:

The Brewlab Podcast, Episode 2 (March 30, 2021): Lost Beers Recreated from Shipwreck Bottles

GUE Scotland vlog -Episode 1


Andy Pilley is a Chartered Surveyor, team member of GUE Scotland, passionate wreck & cave diver and Ghost Fishing UK team diver. Andy started diving with the Scottish Sub-Aqua club in 2011 and began diving with GUE in 2018. Andy dives on the east and west coasts of Scotland where there is a rich maritime history and an abundance of wrecks to be explored. He has a passion for project diving and is developing objectives for a number of sites with the GUE Scotland team. He hopes to assist on the Mars Project and with the WKPP in the future.

Continue Reading

Thank You to Our Sponsors

Subscribe

Education, Conservation, and Exploration articles for the diving obsessed. Subscribe to our monthly blog and get our latest stories and content delivered to your inbox every Thursday.

Latest Features