fbpx
Connect with us

Community

Undergoing PFO Surgery as a Team: Deana & Bert’s Excellent Adventure

People like to give GUE a hard time for their uncompromising focus on team diving. But a pair of divers from GUE Seattle has taken it to a new level: getting their PFOs fixed together. The team that bends together, mends together? Instructor and tech diver James D. Fraser willingly tells the tale.

Published

on

by James D. Fraser
Header photo courtesy of Dr. Doug Ebersole

This is the follow-up to the story that ran in InDepth December, 2019: No Fault DCI? The Story of My Wife’s PFO

It has been a year since my wife Deana had a decompression illness (DCI) hit in Bonaire requiring her to do a Table 5 recompression profile in a hyperbaric chamber. At the time of my previous article’s publication, Deana had a Transthoracic Echocardiogram (TTE) bubble study and found out she did have a small to moderate patent foramen ovale (PFO). Two physicians offered similar options for Deana to consider when it came to her diving activities: 

  • Stop diving, as this eliminates any risk of DCI in the future.  
  • Modify her dive profiles to be more conservative: diving only once per day, diving nitrox 32 using air tables, and/or extending her decompression profiles and safety stops.
  • Have the PFO repaired, knowing it is not a guarantee, and continue diving as conservatively as possible. 

Deana had initially decided to wait on doing a PFO closure until after our daughter’s wedding in March 2020, but she realized very quickly that being “conservative” was not in her nature. Deana had already returned to diving within 12 days of her hyperbaric chamber ride. In the 46 days since her treatment, Deana had already done another 15 dives to depths of 90 feet; being conservative really was proving to not be an option for her. Diving was just too much a part of her life. 

Deana with Dr. Ebersole. Photo by D. Ebersole.

In mid-November, Deana reached out to cardiologist and tech diving instructor Dr. Doug Ebersole for a second opinion on the bubble study and his advice about her options. Dr. Ebersole gave Deana the same response as the other physicians; but, knowing Deana and her passion for diving, he suggested that she have her PFO fixed, since her plan was to continue diving. 

Deana also spent time talking to other divers who had been diagnosed with PFOs—some who had them repaired and some who had decided against it—in order to get a more complete picture from both a patient and a doctor point of view. One of the final conversations that pushed Deana to have her PFO repaired was with a coworker who was a nurse practitioner in cardiology with knowledge of PFOs and diving. Her coworker was pretty blunt, stating, “Why are you playing Russian Roulette? You have worked in cardiac and know the risks.” 

Some of these risks include Arterial Gas Embolism (AGE), Venous Gas Embolism (VGE), and cerebral embolism. That was the final “Aha” moment to tip the scale and get Deana to schedule her PFO repair, since “Russian Roulette” was exactly what Deana was doing based on her diving activities following her DCI hit.

Team Approach to Treatment 

Bert Berzicha, one of our GUE Seattle community members, also completed his TTE as a result of having had some symptoms of DCI in the past. The test confirmed the presence of a large PFO. Deana and Bert compared notes initially and discussed diving as a team on future dives using more conservative decompression profiles than other teams, allowing the other teams to get out of the water sooner. Deana, however, related what she had learned from talking with her coworker and changed her mind about diving conservatively and instead decided to get the PFO repaired. 

Bert and Deana with some of the GUE-Seattle Tech crew. Photo by Bert Berzicha.

Deana did not want to take the risk of neurological deficits that could be irreversible. Deana suggested to Bert that he come with her to have his PFO repaired at the same time. Bert continued to research the subject, looked at his work schedule, and decided doing a “team” procedure made sense. Just as a dive team shares a plan, resources, and emergency procedures, a medical procedure shares similar benefits when working as a team. 

It was time to plan a date for both of them to have the procedure. Deana and Bert both live in the Seattle area. Dr. Ebersole lives in Lakeland, Florida, so logistics included time off work, pre- and post-surgical care, flights, hotels, and transportation. Deana arranged to have her sister Jessica fly into Tampa from Dallas, prior to them arriving, so she could pick them up from the airport to make it to the hospital in time for the procedure. I was going to be in Australia on a business trip at the time, so I was not able to be there pre-surgery. I ended up reworking my return trip and flew from Canberra, AU to San Francisco, then on to Tampa, to land just an hour after their surgeries were finished and meet them back at the hotel. 

Even though Deana and Bert could fly home 24 hours after the procedure, they decided to stay the weekend just in case there were any complications and to take it easy. Deana, however, had a different take on “easy.” The morning after surgery, Deana was invited by Dr. Ebersole to watch a procedure that he and his team perform called the “WATCHMAN” procedure (less than 24 hours after post-op). Then we picked up Bert and Jessica, and jumped into the truck to do a 300-mile, five-hour road trip to High Springs, FL, to take a tour of the Halcyon facility and say “Hi” to Orie Braun, Lauren Fanning, and Mark Messersmith; stop in at Global Underwater Explorers (GUE) HQ to buy some swag; and drive down to Ginnie Springs to see where Cave 1 may take place in Deana’s and my near future. Not bad a day after surgery. 

Deana and Bert after surgery. Photo by James Fraser

It was at Ginnie Springs where Bert came to Deana and stated he thought he had active bleeding. We all paused and turned pale, knowing we were not in a great location for this to be happening, but after being assessed by Deana it turned out to be post-op bruising from the surgery. This did, however, make us stop and think, “We just drove 300 miles away from the hospital we had decided to be close to in case of complications.” I am sure Gareth Lock would find a really good human factors story in there somewhere. 



Deana’s PFO adventure Timeline

2019

  • OCT 8: 47 m/153 ft technical dive resulting in a DCI episode requiring recompression.
  • OCT 20: First dive post-chamber ride to 16 m/52 ft
  • OCT 29: TTE Bubble Study; “Deana has a small to moderate PFO”
  • NOV 17: Dr. Ebersole receives Deana’s TTE study for a second opinion 
  • NOV 21: Deanna dives now to 28 m/90 ft
  • DEC 4: Last dive before PFO repair. In the 46 days since her hyperbaric treatment Deana made 15 dives: “Conservative Not”
  • DEC 12: Deana and Bert have PFO procedure
  • DEC 13: Lakeland to High Springs road trip

2020

  • JAN 27: First dive post closure—15 m/49 ft and spaced dives 2-3 days apart
  • FEB 15: Started doing multiple dives daily no greater 15 m/50 ft
  • MAR 8: PFO follow-up; OFFICIALLY cleared by Dr Ebersole to dive
  • MAY 7: Dives now pushing 30 m/100 ft
  • MAY 31: First Tec dive to 33 m/110 ft 

Since May, Deana has done 120 dives in 2020 with a max depth of 52 m/170ft, which she did on September 12. Deana has gone back to no-restriction diving and has completed 16 technical dives since this summer. Some of these have been assisting with photogrammetry dives.

  • 46 m/150 ft to 52 m/170 ft: 3 dives 
  • 40 m/130 ft to 46 m/150 ft: 5 dives 
  • 30 m/100 ft to 40 m/130 ft: 8 dives 

Getting Personal With PFOs

COVID-19 has prevented us from doing a dive trip this year, which is the one main test we still have yet to do: repeat the scenario that always led to her getting DCI, which was three consecutive days of recreation and tech dives, to see if she experiences any recurrence of DCI symptoms. 2021 will hopefully open up this opportunity, or by that time Deana will already be training for GUE’s Tech 2 course. In either case, Deana and Bert are both very happy to have had their PFOs repaired; both have seen improvements in their health in other areas such as endurance, no longer being easily winded, and, in Bert’s case, less headaches, which he had prior to the PFO closure. 

James, Deana and Bert. Photo courtesy of James Fraser.

To get a PFO repaired is a personal choice, and no one should ever take surgery lightly as it has its own risks. Divers with PFOs need to do their own research and consult an interventional cardiologist, such as Dr. Ebersole, who understands diving. Only then can they make an informed choice based on their own unique situation whether or not a PFO closure is right for them. This article is meant to show the process and outcome of two very experienced and ambitious divers who made the choice to have their PFO repaired and the results of that decision.  

(PFO) Free At Last! Deana after completing her first dive to 52 m/170 ft in Lake Crescent, WA diving the Warren car. Photo by Bert Berzicha

Additional Resources

Diving and Hyperbaric Medicine: The effectiveness of risk mitigation interventions in divers with persistent (patent) foramen ovale  by George Anderson, Douglas Ebersole, Derek Covington and Petar J Denoble. 2019 Jun 30.

Alert DiverPFO Study Update by Petar J Denoble

Alert Diver: Cases studies of divers who had their PFOs closed with transcatheter-applied occluders: Divers with Holes in their Hearts by Petar J Denoble 2010

This image has an empty alt attribute; its file name is image.png

James D. Fraser is a GUE Fundamentals and Rec 1/2 Instructor, PADI MSDT, and NAUI Scuba Instructor, and has been diving in the Pacific Northwest for over 30 years. James currently lives in Seattle, WA, with his wife and dive teammate Deana Fraser. As a member of the GUE Seattle Board of Directors, James is able to share his experiences and work with Deana at growing the local diving community sharing their passion with all who are interested. James recently embraced technical diving, becoming certified as a Technical 1 diver with GUE. James and Deana have had opportunities to travel all over the world to experience their passion in amazing places such as Egypt and the Maldives. James currently works as a Cyber Security Director with a Fortune 500 Defense Contractor and has been a residential construction business owner and Emergency Medical Technician (EMT). 


Community

Brits Brew Beer Booty

What do you get when you combine British divers’ proclivity for shipwreck exploration with their strong affinity for beer? A tasty treasure hunt on the “Wallachia” that resulted in swilling 126-year old reconstituted British beer. GUE Scotland’s detective chief inspector Andy Pilley recounts the tale.

Published

on

By

by Andy Pilley
Images courtesy of
A. Pilley

Header Image: GUE Scotland’s brewmeisters enjoying their brew (L to R) Top: Owen Flowers, Andy Pilley, Wayne Heelbeck. Middle: Steve Symington, A. Pilley, O. Flowers, Bottom: W. Heelbeck, Sergej Maciuk, S. Symington

“Give my people plenty of beer, good beer, and cheap beer, and you will have no revolution among them.”

Queen Victoria

I never thought when I started diving 10 years ago, that one day I would be able to sit down for a pint of beer with the team from GUE Scotland recreated from a brew that has been hidden under the waves for 126 years. Let me explain.

The Wallachia was a single screw cargo steamer that was owned by William Burrell & Son of Glasgow, and employed on regular trips between Glasgow and the West Indies. On 29th September, 1895 she left Queen’s Dock, Glasgow at 10am bound for Trinidad and Demerara. On board was a valuable general cargo including whisky, gin, beer, acids, glassware, and earthenware plus building materials and footwear. By 1pm that afternoon she had settled on the seabed of the Clyde Estuary after colliding with another ship in a fog bank, she was forgotten until 1977 when a local sub-aqua club rediscovered the wreck site.

The wreck of the Wallachia lies on an even keel in approximately 34 metres of water on a sandy seabed. The wreck itself is largely intact and has six holds in total, three forward and three aft. In the rearmost hold there are thousands of bottles of beer, some still inscribed with the name of the maker, McEwans of Glasgow. This is where myself and the team from GUE Scotland enter the story.

The Wreck of the Wallachia 

The Wallachia is one of the more accessible sites on the west coast of Scotland, where we carry out most of our diving. Depending on weather and tidal conditions, visibility on the wreck can be +10m/33 ft on a very good day or less than 2m/6 ft if there has been a lot of rain due to the amount of particulate in the water. Other elements to consider are the tide as this can vary in its intensity, as well as surrounding boat traffic. The wreck lies in close proximity to a ferry route and care must be taken not to dive when the ferry is closeby. However despite the challenges, the wreck is very rewarding and offers a diver plenty of places to explore and items to look at. 

The main point of interest for most has been the rearmost hold, where the bottles of whisky and beer were stored. The majority of the whisky was removed in the 1980’s however a few bottles can be found on occasion, depending where you look. What remains are thousands of bottles of beer, still with the corks and contents intact. Over the course of 2018 & 2019, the team at GUE Scotland dived on the wreck and recovered a number of bottles from the hold. 

After a chance discussion with a friend at dinner one night, I was given contact details for a company called Brewlab, which is based in Sunderland in the north east of England. Brewlab specialise in the provision of specialist brewing training, as well as laboratory services such as quality assurance, product development, chemical/microbiology testing as well as long term research options. I made contact with Keith Thomas, the Director of Brewlab, to discuss whether he would be interested in analysing the beer and investigating whether it could be recreated. Needless to say the proposal piqued his interest and arrangements were made for the bottles to be shipped to his lab.

Unbeknownst to me, the recovery of historical beers is rare, due to various sources of degradation/contamination which can affect any residual microbial cells and chemical components left in the beer that were used as part of the brewing process. So these samples are a valuable source of information on past brewing and microbiology. Over the course of 2019/2020, Keith and I kept in regular contact over the progress of the investigations and the full analysis of the beer has recently been published.

A Brewing Interest

Between 1850 and 1950, the application of scientific principles to brewing was becoming increasingly prevalent and microbiology was playing an increasingly important role. A pertinent issue in brewing microbiology around 1900 was the application of pure Saccharomyces yeast cultures developed by Hansen at the Carlsberg laboratory in 1888. These were readily adopted by continental breweries as providing more controlled production and purer beers. Application to UK brewing was, however, less positively received, in part because of the belief that British beers possessed particular flavours arising from mixed yeast cultures and, specifically, the involvement of Brettanomyces species. This was especially believed to be essential for the character of ‘stock’ ales which were matured for extended periods.

While a number of breweries did try pure culture yeasts, UK brewing was resistant to change and, with the intervention of World War I, retained its indigenous yeast cultures. Since the 1940’s a more biotechnological approach to fermentation demonstrated the value of pure culture and was progressively applied to the larger breweries developing at that time. 

During the formative period of brewery microbiology after Pasteur, brewing yeast were identified as Saccharomyces species based on morphological features of shape, filamentous propensity and spore characteristics. Non brewing, ‘wild’ yeast was recognised and termed ‘Torula’ if non-sporulating. Of these Brettanomyces strains were identified as contributing important character to stock ales. It is also clear from brewing texts that bacteria were recognised as spoilage organisms in beer, as had been initially demonstrated by Pasteur in 1863. These species were mostly categorised as bacilli and typically portrayed as rods and associated with sarcina sickness – generally producing sourness. Some studies, nevertheless, identified lactic acid bacteria as indigenous components of standard beers.

Contemporary breweries are increasingly interested in using novel microbiology, either unconventional yeast strains or mixes of species and strains for sour and natural products. Identifying the specific strains and species of yeast and bacteria present in Victorian and Edwardian beers is directly relevant to this and has particular value if cultures of authentic microorganisms can be retrieved. Reports of retrieved historic brewery microbiology are limited but hold interesting promise for identifying novel microorganisms.

The specific parameters of the analysis are contained in a published research paper, Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing.”

As I mentioned, the primary objective of the analysis was to confirm whether detail could be provided on the original brewing ingredients and the fermentation microbiology. The analysis confirmed the use of Brettanomyces/Dekkera bruxellensis and Debaryomyces hansenii, which are brewing and fermentation yeasts respectively. The presence of Debaryomyces is interesting as this genus has not been noted as a historic feature of historic brewing, but has been identified in spontaneous fermentations, for example in Belgian lambic beers. Although the strain was reported to the brewing industry in 1906, it has not featured as a major contributor to beer fermentations since.



The analysis has also provided relevant information of the beer character and has confirmed that the beer recovered from the Wallachia was a stout, close to style expectations of the time and had an alcohol content of c. 7.5%. The colour gravity was high, resulting in a much darker beer however a much lower level of bitterness. Again this was typical style of the time and differs from other modern stouts.

More interestingly is the presence of various types of bacteria, which will likely have been picked up during the brewing process. The table below lists these for reference. Needless to say, historic brewing was not a sterile process in comparison to modern methods!

Bacillus licheniformisPlant and soil bacterium
Finegoldia magnaCommensal skin bacterium
Fusobacterium sp.Possible pathogenic bacterium
Kocuria roseaPossible urinary tract pathogen
Mogibacterium pumilumPossible oral cavity bacterium
Shigella sonneiEnteric pathogen
Staphylococcus epidermidisCommensal skin bacterium
Stenotrophomonas maltophiliaSoil bacterium
Varibaculum cambriensePossible pathogenic bacterium

Table 1: The bacteria found in the Wallachia beer bottles

Due to the relatively stable conditions on the wreck, being in near darkness and at a relatively cold temperature (between 6º–14ºC/43º-57ºF depending on the time of year), the live yeast structures within the beer were protected from sources of stress and allowed them to survive over the past 126 years. Luckily, Keith was able to extract these samples and begin to recultivate the yeast, specifically the Debaryomyces, with the hope of being able to rebrew the beer.

Cheers Mates

Just before Christmas, I finally received word from Keith that he had completed a trial brew and seven bottles of the brew were on their way to me. A few excitement laden days later and a nondescript box arrived at my office with the beer inside. I called the guys on our Facebook group chat to show them the case and got each bottle packaged up and sent out to them. 

A few days later, once everyone had received their sample we got together again to try the samples. There was an air of excitement after the two years it had taken us to get to this point, the most anticipated pint ever! I’m no expert in the flavour profiles of beer so you will have to forgive me for my relatively basic analysis. In summary, I got flavours of coffee and chocolate and there was a relatively low level of carbonation, which made it very drinkable. The rest of the team got similar flavours, the only complaint being there wasn’t more to try!

There will of course be slight differences in flavour since we don’t normally add the bacteria listed above as ingredients. However, the recipe we have is as close as we can make it to the original stock version.

The next steps for the project are to carry out further investigation on the characteristics of the Debaryomyces yeast strain in order to determine their suitability for fermentation and potential use in future brewing production. We are making approaches to various commercial breweries in order to discuss future commercialisation of the recipe and produce the brew on large scale. With the story behind the original recipe, we’re hopeful that the provenance would be a key selling point to consumers. It is my hope that the recovery of these samples will open up new possibilities for different types of beers to be developed, and offer something different for beer enthusiasts to try.

I have also found out that there are other types of beer to be found on the wreck, specifically an IPA style. Once we’re allowed to begin diving again, I am hoping to return to the Wallachia and recover some of these bottles so we can carry out the same analysis and keep the project moving forward.

In the mean-time, cheers!

Additional Resources:

The Brewlab Podcast, Episode 2 (March 30, 2021): Lost Beers Recreated from Shipwreck Bottles

GUE Scotland vlog -Episode 1


Andy Pilley is a Chartered Surveyor, team member of GUE Scotland, passionate wreck & cave diver and Ghost Fishing UK team diver. Andy started diving with the Scottish Sub-Aqua club in 2011 and began diving with GUE in 2018. Andy dives on the east and west coasts of Scotland where there is a rich maritime history and an abundance of wrecks to be explored. He has a passion for project diving and is developing objectives for a number of sites with the GUE Scotland team. He hopes to assist on the Mars Project and with the WKPP in the future.

Continue Reading

Thank You to Our Sponsors

Subscribe

Education, Conservation, and Exploration articles for the diving obsessed. Subscribe to our monthly blog and get our latest stories and content delivered to your inbox every Thursday.

Latest Features