Connect with us

Equipment

Decompression Habitats Are Ascendent

Armed with reliable rebreathers, expedition-grade scooters, electric heating, helium mixes, high-powered dive computers, and those all-important P-valves, today’s cave explorers are giving our collective underwater envelope a hard shove (deeper and longer), all the while enduring increasing hours of long, cold, boring decompression. That’s the reason that the use of deco habitats—first pioneered by Dr. Bill Stone in the late 1980s—is on the rise. Here anesthesiologist-cum-cave explorer Andy Pitkin explains everything you need to know about modern deco habitats from their history, construction, and positioning to ensuring adequate, safe breathing gas flow.

Published

on

By Andy Pitkin

Cold. Hungry. Uncomfortable. Bored. These adjectives can aptly be applied to the vast majority of divers during the decompression portion of advanced technical dives. The commercial diving industry, less concerned about divers’ comfort and more interested in safety and efficiency, has long incorporated decompression in a dry chamber for anything other than shallow diving operations. Unfortunately, with the notable exception of Bill Stone’s 1999 Wakulla 2 project, surface decompression in a pressurized chamber has been impossible for technical divers. The next best thing is a habitat.

The ‘habitrough’ used by Sheck Exley at Cathedral Canyon during his exploration there in the 1980s. Photo by ?

Habitats are gas-filled spaces underwater that allow a diver to remain at pressure while getting part or all of their body out of the water. The name comes from experimental living quarters such as the Sealab series where divers would remain underwater for a number of days for (usually) scientific purposes. The habitats used for decompression by technical divers are much more modest, and this article will discuss the theoretical and practical considerations of decompression habitats, some of which are obvious, and some have had to be learned through real-world experience. 

Paul Deloach (left) and Sheck Exley (right) decompressing in the habitat designed by Bill Stone and funded by Rolex for the Wakulla Spring 1987 exploration project by the US Deep Caving Team. The 40m (120 ft) chain hoist allowed the divers to adjust the depth of the habitat as their decompression progressed. Photo taken by Wes Skiles and courtesy of Bill Stone/US Deep Caving Team, Inc.

Advantages Of Habitats

The benefits of a decompression habitat are so self-evident that they hardly need to be mentioned. The most obvious is warmth, because of the much lower loss of body heat in a gaseous environment compared with immersion in water. Even if only the diver’s head is out of the water there is a significant improvement in both subjective and objective thermal homeostasis. Being out of the water reduces both the risk of oxygen toxicity and the severity of the consequences of a seizure, which is likely to be fatal underwater but could probably be survived in a habitat.

Eating and drinking is much easier, and the ability to talk, listen to music, watch movies and pass the time in relative warmth and comfort makes a long decompression of many hours much easier to tolerate, as well as being considerably safer. A habitat also can be used as a makeshift on-site recompression chamber, which could at least allow a diver’s symptoms to be stabilized while arrangements are made to support the necessarily lengthy in-water decompression phase.

Andrew Pitkin illuminates the 15 m/50 ft habitat at Lineater Spring. This habitat is 700 m/2300 ft underwater from the cave entrance. The aluminum “floor” greatly assists entry and egress from the habitat. Photo by Kyle Moschell / Karst Underwater Research.

Securing the Habitat

Decompression habitats have occasionally been installed in open water; examples include Martin Robson’s exploration of the Blue Lake in the Russian Caucasus mountains in 2012 [1] and Michael Lombardi’s Ocean Space Habitat, also in 2012 [2]. The overwhelming majority have been used in cave diving, because underwater cave exploration often mandates lengthy decompression and the environment usually guarantees that decompression will occur in a specific location. The wide variety of underwater caves has resulted in many different approaches to construction, from sealing a natural airspace formed by a dome in the ceiling using a tarpaulin (“habitarp”), upturned rubbish bins (“habibin”) to large custom-designed and manufactured enclosures. A volume of gas large enough to be useful has considerable buoyancy, which must be restrained either from above by the cave ceiling or from below using the floor or wall of the cave passage. A 1000 liter (264 gallon) IBC container often used for this purpose has a buoyancy of 1000 kg (2204 lbs), and many habitats are larger. 

  • Halcyon Sidemount
  • DIVE RITE
  • Fourth Element

Unless it is constrained by the cave ceiling, the anchoring system must be very strong and reliable. Natural anchors such as rock projections and large boulders are better for conservation, but they may not be available in the required location, necessitating placement of artificial anchors in the cave wall or floor. These are very similar to anchors used in vertical dry caving, and can be screw anchors, expansion bolts or even glue-in types, typically made of stainless steel (or titanium, if money is no object!).

Air-powered drills are much less expensive than battery-powered underwater drills but can use a large amount of compressed air. When our group (Karst Underwater Research or KUR) placed a habitat 2 km/6562 ft from the entrance of a cave in 2013 (when no suitable battery-powered underwater drill was available), the large volume of bubbles released from the air drill we used to make the holes for the anchors percolated so much silt from the walls and ceiling that the water visibility was reduced to almost zero for about a third of the exit distance. Whatever method of fixing the habitat is chosen, it needs to be very secure, as the consequences of an anchor coming loose could be extremely severe.

The 16 m/52 ft habitat in the Pearse Resurgence. Photo by Simon Mitchell.

The depth of the habitat may be a compromise between what is ideal for decompression and what is dictated by the location. Since the final decompression stop is the longest, the habitat is often targeted as close to 6 m/20 ft deep as possible. Some advanced projects, most notably the Wet Mules’ exploration of the Pearse Resurgence in New Zealand, have used multiple habitats at various depths because of the extreme maximum depth of more than 240 m/787 ft and cold water 6°C/43°F. 

To maximize the air space, the habitat container needs to be as level as possible. In other words, the water level can be no lower than the highest point of any of the sides where gas can escape, and this consideration may be more important than installing it at the ideal depth. When a habitat is anchored from below, it is usually easiest to start a little deeper than the intended depth and then adjust to the correct depth before the container is completely filled with gas.

Our group typically uses polyester static caving rope (nylon lengthens about 5-10% on getting wet) with equalized double anchors at the bottom (double figure 8 or bowline on a bight) and ‘super Münter’ adjustable hitches at the top for easy adjustment of length. When the anchor points have been close to the bottom of the habitat, we have had a lot of success with appropriately-rated webbing ratchet straps.

The 30 m/100 ft and 40 m/130 ft habitats in the main shaft of the Pearse Resurgence during the Wet Mules’ exploration in 2021. The cable carried power for drysuit heating and a simple buzzer communication system. Photo by Simon Mitchell.

The Use of Containers

Many factors will influence the choice of a container for a habitat, but they can be reduced to two primary ones: location and cost. Inflatable habitats—for example modified commercial lift bags—have the advantage that they can be rolled or folded up to fit through narrow parts of the cave. We have found that a large golf club case works as a streamlined container for an inflatable habitat that can be swum or towed by a DPV.

A rigid habitat, typically an industrial or occasionally purpose-built container, is much more cumbersome to move into a cave, and these are typically installed close to the cave entrance, which obviously has to be large enough for it to fit through. Experience has shown that any modifications to the container (e.g. rings or hooks for hanging equipment) are vastly easier to perform out of the water before the habitat is installed, especially if any kind of adhesive is required. A reliable valve near or at the highest point in the habitat is very helpful for removing gas when the habitat needs to be adjusted or removed but, with a little practice, gas can be siphoned out by two divers and a short length of garden hose. 

Unless the cave floor is close to the bottom of the habitat, the occupants will need either a floor or seats to keep them out of the water. The size and positioning of seats is a compromise between comfort and ease of entry into the habitat. 

Breathing Gas

The easiest and most inefficient option is for divers to use a conventional open-circuit, second stage regulator, with the cylinder being hung in the water below the habitat. Using a conventional diving rebreather may be difficult because of space limitations, prompting some home-made designs which are usually of the chest-mounted (or ‘laptop’) configuration. They can also be suspended at any convenient place in the airspace, because there is no hydrostatic counterlung loading.

The most efficient and comfortable option is for divers to breathe the habitat atmosphere itself, which immediately presents three new considerations: oxygen addition, carbon dioxide (CO2) removal, and gas monitoring. Let us look at each of these in turn.

Adding Oxygen

The above-mentioned 1000 liter IBC container, large enough for two divers, positioned at 6 msw/20 fsw, and filled with the surface equivalent of 1280 liters of oxygen and 320 liters of nitrogen, would entail an oxygen fraction of 0.8 and a partial pressure of oxygen (PO2) of 1.28 ata. We can conservatively assume that a decompressing diver will have an average oxygen consumption of about 1 liter/minute, and therefore two decompressing divers would consume about 120 liters of oxygen per hour. After one hour, the oxygen fraction within the habitat would have dropped to 0.78 and the PO2 to 1.25 ata, assuming the resulting CO2 does not remain in the airspace. This simple calculation, which is supported by practical experience, shows that elaborate arrangements for maintaining habitat PO2 are unnecessary and can be accomplished by simply purging an oxygen second stage intermittently within the habitat (e.g. every 30 minutes or more).

Removing CO2

There are only two ways of removing CO2 from an enclosed airspace: replacement by adding gas free of CO2, and chemically removing the CO2 from the atmosphere using a CO2 absorbent (scrubber). The first method is often used in hyperbaric chambers—which share many of the practical problems of underwater habitats—because it is safe and simple. Unfortunately for technical divers, it is too inefficient to be practical in most circumstances. Going back to our example above, our two divers will have exhaled about 96 liters of carbon dioxide in the first hour, assuming a typical respiratory quotient of 0.8, resulting in an ambient CO2 concentration of 6.5% (surface equivalent by volume). By this point, both divers would  likely be feeling significant adverse effects. 

If we assume that the CO2 in the habitat atmosphere should be maintained below the 0.5% surface equivalent value commonly used for rebreather scrubber testing, flushing of the habitat would have to be started after less than 5 minutes. The rate of continuous flushing to keep the CO2 in an enclosed pressurized airspace at a constant level is given by the following equation [3,4]:

where Qgas is the rate of gas ventilation, Pamb is the ambient pressure, VO2 is the total oxygen consumption of the divers, R is the respiratory quotient, F is a mixing factor (1 = ideal mixing) and PCO2 is the desired ambient partial pressure of carbon dioxide. 

For our two divers, the habitat would have to be flushed at a rate of 512 liters per minute or 19.5 cu ft per minute (surface equivalent) to maintain the CO2 at a surface equivalent of 0.5%. Note that the amount of gas required is independent of the volume of the habitat. This is logistically unsustainable in most situations: a typical 80 cu ft (11 liter) aluminum cylinder would last less than 3 minutes. This shows how difficult it is to maintain low CO2 levels with flushing of the gas space. Even if the CO2 is allowed to rise to a surface equivalent of 2%, which would cause some breathlessness but might be tolerable, the same cylinder would still only last about 16 minutes.

For the Wakulla project in 1987, Bill Stone calculated a 32 cu.ft./min (906 liters/min) gas flow requirement for an exploration team in that habitat positioned at 60 ft/20 m depth [5]. Two industrial Ingersoll-Rand surface compressors were easily able to meet this demand via a 400 foot long, ¾ inch internal diameter hose with manual shutoff valves and check valves fitted at both ends to prevent inadvertent venting of the habitat atmosphere when the compressors were not running. No direct measurement of habitat CO2 levels were made; the divers were able to purge the gas in the habitat whenever it seemed excessively ‘stuffy’.

The only other way to reduce the CO2 in the atmosphere is to remove it chemically, turning the habitat into a giant shared rebreather. This is relatively a simple engineering task, using a sealed 12V motorcycle radiator fan to blow habitat gas through a scrubber bed, ideally with some form of speed control to allow the flow rate through the absorbent to be controlled by the diver(s). It can be powered from portable battery packs (such as those used for dive lights or undersuit heating) or a cable from the surface. Such a device needs to be transported to the habitat inside an appropriate container or designed into a pressure-proof housing (see picture).

A habitat scrubber built into a pressure-proof housing, with a venting valve on the left end cap. The white cylinder in the center is the axial scrubber basket, the space on the right is occupied by the fan, and the space to the left contains oxygen sensors and monitoring. The whole unit is neutrally-buoyant and measures 14 in/36 cm long with a diameter of 6 in/15 cm. Photo: Andrew Pitkin

Monitoring Your Gas

When KUR started building habitat scrubbers about 10 years ago, we used a prototype CO2 monitor for a rebreather to help decide how fast to run the scrubber motor. The monitor, which used infrared absorption spectrometry to measure CO2, was power-hungry and would exhaust all of its battery capacity in a few hours if left on continuously, so we would only switch it on intermittently. To pass the time while it was warming up, we would attempt to guess what the reading would be, and after a few iterations we became surprisingly good at estimating the CO2 level subjectively by how ‘stuffy’ the habitat atmosphere felt. Switching on a habitat scrubber fan feels pleasantly like someone opening a window, but the insidious accumulation of CO2 when the scrubber is off is much harder to notice. As an aside, I believe there is some potential for research into whether divers can be trained to recognize increasing levels of inhaled carbon dioxide from scrubber breakthrough. Handheld CO2 meters are available, and we are currently evaluating some of these for use in our habitats. Many are not suitable for the environment or will not give accurate readings in the presence of 100% humidity.

Oxygen measurement is simple, as in any rebreather, and can easily be combined with the scrubber assembly so that the sensors sample the gas being circulated by the fan. 

  • Fourth Element
  • DIVE RITE
  • Halcyon Sidemount

Ensuring Diver Safety

The limited space in most habitats often precludes the use of the divers’ main scuba system, in which case this must be removed when entering the habitat. When leaving for the surface (or a shallower habitat) this must either be redonned or a separate (often simple open-circuit) scuba used. These transitions present some hazards, especially if there is no solid floor beneath the air space with the potential for critical items to be dropped out of reach. A support diver is very valuable to assist a mission diver with entering and exiting the habitat and retrieving any items that are inadvertently released.

Explorer Matt Vinzant decompresses inside the 15m/50 ft habitat at Lineater Spring wearing his dual rebreather rig. This habitat is custom-built to allow two divers with redundant rebreathers to sit reasonably comfortably inside. Photo: Andrew Pitkin

As mentioned above, the positive buoyancy of a habitat can easily exceed 1000 kg (10kN) so all anchors, ropes, and connectors such as carabiners and maillon rapides should be appropriately rated for the application. The consequences of a habitat breaking loose in an uncontrolled ascent could be very severe and even fatal.

One concern, especially if the habitat atmosphere has a significantly elevated PO2, is fire safety. With the bottom of the container open to the water, its atmosphere necessarily has 100% humidity, which has been shown experimentally to dramatically inhibit flame spread due to the latent heat of evaporation of water. While practical experience has been reassuring so far, the relative balance of fire-promoting conditions and humidity within a habitat has not yet been scientifically studied, so I would advise great caution with any potential ignition source, especially electrical switches, brushed motors (potential arcing), and dive lights (overheating).

Communications

The Wakulla 1987 project, pioneering in so many ways, introduced the use of habitat to surface communications with two phone lines, one of which was able to be used for long-distance calls, although the pushbutton phone used for the latter became unreliable after a time because of moisture ingress affecting the pushbuttons. Our group, like some others, has adopted single-wire earth-return telephones (also known as Michiephones) for communication with the surface. These are simple, robust, and require only a single wire to be installed to the habitat, although we sometimes use two-conductor military field phone wire with the conductors paralleled for redundancy. You can see them being used in this Alachua “habichat” video.

We have also used the combination of an LTE modem, power-over-ethernet switch, rugged ethernet cable, and a wi-fi access point in a pressure-proof housing to provide internet access within a habitat close to the entrance. While attractive, this option is not suitable for long-term installation and the effort of setting it up for each dive makes our dive teams generally prefer the single wire phone option. Other systems, such as two-wire intercoms for offices or door entry have also been used successfully. All these devices need to be able to function at elevated atmospheric pressure with 100% humidity.

Neville Michie (pronounced ‘Mickey’), an Australian caver, designed a simple and reliable earth-return telephone in the 1970s, although the concept is much older, dating back to the 19th century. Many similar units have been constructed for use around the world by cave rescue teams. Picture: Andrew Pitkin

Is There A Deco Habitat in Your Future?

We have already seen one version of the future: the Wakulla 2 project’s surface decompression chamber system with a transfer capsule (“bell”) to transport the divers under pressure from the water into a dry decompression chamber on the surface. Unfortunately very few sites have the geography, and even fewer divers the financial means, to support it. 

The ultimate habitat? An exploration diver entering the personnel transfer capsule (PTC) during the Wakulla 2 project in 1999. Because of the topography of the cavern, an angled Tyrolean of ¾” (19mm) rope was rigged along its roof to allow the PTC to reach the divers at 30 m/100 ft depth and get them out of the water several hours earlier than if the PTC was lowered vertically. Photo taken by Wes Skiles and courtesy of Bill Stone/US Deep Caving Team, Inc.

Some explorers have started experimenting with small one-person collapsible habitats which with advances in materials technology can be made more compact and lighter. I foresee more use of purpose-designed enclosures, especially collapsible ones that can be deployed in multiple locations. Underwater rotary hammers are now available which, although expensive, allow rapid placement of anchors in hard limestone. I also anticipate more habitats deployed in open water, like Michael Lombardi’s system-see below.

For deep cave exploration, habitats offer safety, some very welcome mouthpiece-free time, a chance to eat and drink, and even entertainment. More importantly, they allow the diver to warm up and stay warm at a critical phase of the dive, promoting (presumably) better perfusion and faster off-gassing. For these extreme dives, habitats truly change the game.

See Companion article: Portable Habitats—New Technical Diving Capabilities are Well Within Reach  by Michael Lombardi

Subscribe for free

References

[1] Blue Lake: the habitat. 

[2] Lombardi M. Portable Habitats: New Technical Diving Capabilities are Well Within Reach. InDEPTH V 4.11

[3] Nuckols ML, Tucher WC, Sarich AJ. Life Support Systems Design: Diving and Hyperbaric Applications. Pearson Custom Publishing, Boston, USA, 1996.

[4] Gerth WA. Chamber Carbon Dioxide and Ventilation. NEDU TR 04-46. Navy Experimental Diving Unit, Panama City, FL, USA, 2004.

[5] Stone WC. The Wakulla Springs Project. U.S. Deep Caving Team. January 1st, 1989. ISBN-10: 0962178500. ISBN-13: 978-0962178504.


Andrew Pitkin learned to dive in 1992 in the cold murky waters of the United Kingdom and started cave and technical diving in 1994. His first exposure to exploration was in 1995 when he was one of a team of divers who were the first to reach the bottom of the Great Blue Hole of Belize at 408 fsw (123 msw). Subsequently he has been involved in numerous cave exploration projects in Belize, Mexico and Florida.

From 1996-2000 he was employed at the Royal Navy’s Institute of Naval Medicine, running a hyperbaric facility, treating decompression illness, participating in research into outcome after decompression illness, submarine escape and testing of new military underwater breathing systems. He is one of a handful of civilians to be trained by the Royal Navy as a diving medical officer.  

He moved to Florida in 2007 and is currently on the faculty of the College of Medicine at the University of Florida in Gainesville. With Karst Underwater Research he has participated in numerous underwater cave exploration and filming projects. Like many explorers, he spends much of his spare time developing and building innovative equipment for exploration purposes.

Equipment

Configure Me This: The Annotated Sidemounter

We make a deep dive into the world of sidemount diving, and examine seven leading sidemount systems with guest editors Steve Davis and Stratis Kas.

Published

on

By

This feature was created by Steve Davis, Stratis Kas and Michael Menduno. Introduction by Michael Menduno. Special thanks to Michael Thomas and brand representatives who helped us. Cover collage by SJ Alice Bennett with photos by Jason Brown of Bardo and Stratis Kas. Images by Stratis Kas unless noted.

🎶 Pre-dive Clicklist: Dave Brubeck – Take Five 🎶

At last, I am pleased to present InDEPTH’s long awaited sidemount edition, which has been in the works for over a year. The purpose of the issue is to celebrate the art and practice, as well as the equipment and culture of sidemount diving. Call it, “The Joys of Sidemount.” But whether you already follow the Bogarthian way, or simply regard it all as “widemount,” I promise you there is something for you in this issue.

The seed of an idea for a sidemount issue grew out of two things: First was the popularity and interest of our NOV 2021 feature that celebrated our innate gear headedness: “Annotated Tekkie,” which examined the question of what and how much kit is required to safely explore our underwater world. Diving is a technology-dependent activity to be sure.

Second, was, that we’ve been seeing tremendous growth and interest in sidemount diving we’ve been seeing. Like technical diving itself, what started in the cave community with small groups of experienced divers experimenting with DIY sidemount configs some three plus decades ago, has now blossomed into a mainstream, commercial tech diving activity in both cave and open water. Sidemount diving has now even spilled over into recreational diving—the configurational equivalent of recreational nitrox in the era of tech mixed gas diving.

One of the important inflection points was bringing sidemount diving out of the caves where the configuration was born, into open water. Sidemount pioneer Jeff Loflin was one of the individuals instrumental in bringing sidemount to recreational divers and the open water tech community. He explained it this way to me in our interview, “We were taking sidemount from the dark, and bringing it into the light.”

“We were taking sidemount from the dark, and bringing it into the light.”—Jeff Loflin

Interestingly, over the last decade, sidemount rebreathers, used as both a primary or a bailout, or both, have also gained significant traction driven by innovative vendors like KISS/XDEEP, SF2, Divesoft, and others. In fact, seven vendors are currently producing sidemount rebreathers. Note that we have also seen an increase in the number of chest-mounted units that can be integrated with sidemount systems. However, we decided to focus on open circuit sidemount for the purpose of this issue, andl address sidemount rebreathers at a later date.

Today, virtually all of the tech diving agencies offer open sidemount courses, with the possible exception of NAUITEC. For example, these range from “Intro to Tech” level sidemount courses, at RAID, which are aimed at getting divers into sidemount at the beginning of their tech journey. At the other end of the spectrum, Global Underwater Explorers (GUE) only offers a cave sidemount course to those who have completed GUE’s advanced cave training (Cave 2) and have at least 50 post-class cave dives.

Similarly, the majority of the major recreational agencies offer a recreational sidemount class for open water divers, including CMAS, NAUI, PADI, RAID, SDI, and SSI. Collectively, these agencies are issuing thousands of certifications a year.

So how big is sidemount diving? Good question, right?!?

How big is tech diving?!? We don’t really know. As an industry we suffer from a severe case of data insufficiency syndrome (DIS). [We can combat this—see our survey below!] However, in speaking with insiders involved in the sidemount business, some rough comparisons emerged.

Sidemount diving is likely bigger than rebreather diving, which according to estimates presented at Rebreather Forum 4 in April, likely represents about 15-20,000 divers globally. This seems like a plausible estimate given the significant cost difference, familiarity with the equipment, and perhaps greater accessibility to training and equipment with open circuit sidemount compared to rebreathers.

Sidemount rebreathers have gained significant traction. Here is Divesoft’s Joseph Bosquez diving a Liberty Sidemount in Ginnie Springs, Florida. Photo by Marissa Eckert.

Another comparison: sidemount diving is likely bigger than cave diving! “Sidemount is not just used for cave diving anymore, but I would say that at least 80% of cave divers have at least tried, or have sidemount in their tool kit. Fifty percent or more dive it exclusively,” Dive Rite general manager Jared Hires explained. Add in tech sidemount diving in open water and wrecks, and the growing number recreational sidemount divers, and we are likely to arrive at what sidemount instructor Steve Davis of Sidemount Pros estimates as “Cave divers plus some.” 

On the recreational side, a PADI exec told InDEPTH that PADI’s Sidemount Standard Specialty is now as popular as its Dry Suit Specialty, which is PADI’s third most popular Specialty Diver course, behind Enriched Air (Nitrox) Diver and Deep Diver, and ahead of Peak Performance Buoyancy. No drills on the knees, puhleez! I kid our friends at PADI.

Despite its growth and relative new-found prominence, sidemount still remains a kind of a best kept secret—the elephant in the restriction?—by which I mean many tekkies (including myself until recently) lack awareness and working knowledge of sidemount diving and may not have even tried it.

Not surprising divers being what they are, even among sidemount instructors and users, there’s a range of opinions on its use and application. On one hand, some view sidemount as a specific tool to be used exclusively for diminutive karst cave, on the other, many consider sidemount more of a platform choice. In fact, Davis, who you’ll hear more about in a minute, offered this question and assertion in our interview, Speaking Sidemount, and then went on and made his case:

 “Is backmount the best tool for cave diving? No, it’s not. Sidemount is far and away the best tool for cave diving!”—Steve Davis

Certainly, many including GUE, would challenge this assertion. But on the other hand, who died and left legacy twinsets in charge? Jacques Cousteau? Is backmount intrinsically safer? Does it offer better performance? If so, please share the data with everyone. There is room for respectful debate. Of course, every platform has its strengths and weaknesses, and environmental conditions, and individual physical and preference differences play an important role in choosing the appropriate platform. However, because of the lack of awareness, knowledge, and direct experience in the overall diving community, the limitations of sidemount get exaggerated, and its application, perhaps, under appreciated.

“There’s absolutely nothing I can’t do in sidemount that you can do in doubles, and there are a shit ton of things that I can do in sidemount, that you can’t do in doubles.”—Edd Sorenson

As instructor trainer and cave rescuer Edd Sorenson explains in his Who’s Who interview, “People used to tell me all the time all the things I couldn’t do in sidemount, and still do. ‘You can’t dive off a boat, you can’t do this, you can’t do that, you can’t scooter, you can’t double stage, you can’t quad.’ I would tell everybody the same thing. There’s absolutely nothing I can’t do in sidemount that you can do in doubles, and there are a shit ton of things that I can do in sidemount, that you can’t do in doubles.” Note in his interview Sorenson recounts taking GUE founder and president Jarrod Jablonski for his first sidemount dive. A trust me dive with Edd? Trust me, you don’t want to miss it.

Not surprising, it seems that many, or most of the dedicated sidemount divers we spoke to for this issue (See: The Who’s Who of Sidemount Diving) offered some version of the following, and or, would likely agree with this meme:

Once You Go Side, You’ll Always Dive Wide.

Ha! I kid our backmount sisters and brothers. None the less, it’s clear that sidemount is here to stay!

Now I’m not a sidemount diver, yet (it’s on my list), and only one member of InDEPTH’s team dives sidemount, in caves. So, to help us with the issue, we enlisted the help of two sidemount experts to serve as guest editors. We reached out to New Zealand-based sidemount instructor, ambassador, and host of the “Speaking Sidemount” podcast Steve Davis, principal of Sidemount Pros. We also enlisted the help of Greek photographer/filmmaker, author, long time InDEPTH contributor, and cave and sidemount instructor, the inimitable Mr. Stratis Kas. Both of them helped with the selection people and sidemount systems we planned to highlight, and authored content for the issue.

Fourth Element

Beginning with this lead story, “Configure Me This,” we explore seven recognized and storied sidemount systems, all of them a little different. Who knew there were that many? In contrast, it’s fair to say, backmount configs have generally become fairly standardized in the global tech community. Please note, that the majority of models are shown wearing their personalized branded gear not necessarily stock products.

Next, we offer the perspectives and stories of 34 leaders in the field, in a piece titled, “The Who’s Who of Sidemount Diving.” We also dive into the philosophy, culture, and practice of sidemount diving in “Speaking Sidemount” and “The What, Which and Why of Sidemount Diving’‘ with our guest editors.

In addition, we offer A Brief History Sidemount Diving with Lamar Hires, Bill Renaker and Patrick Widmann, and specifically the evolution of cold water vs warm water sidemount titled, “The Evolution of Sidemount System Design: Two Distinct Paths Shaped by Florida and Mexico,” by sidemount instructor and author Andy Davis. Finally, the issue wouldn’t be complete with a bit of DIY sidemount heresy from long time scuba engineer and troublemaker, Dave Mclean, call it Sidemount Heresy! Trust me, you’ll be better for the exposure!

Here then is InDEPTH’s celebration of sidemount diving and culture. We want to thank our forward thinking sponsors: DAN EuropeDive Rite, DivesoftFourth ElementHalcyon, Shearwater and XDEEP for making this issue possible. We also want to thank Nicole Alarid, Orie Braun, Jared Hires, Nick Hollis, Michael Thomas, and Patrick Widmann, who helped us sort out sidemount configurations and Elena Vivaldo for researching recreational sidemount. And of course, we want to thank our models: Robert Thomas (CDG), Ricardo Castillo (Dive Rite), Emöke Wagner (Halcyon), Melodie Trevino (Hollis), Marcelin Nebenhaus (Razor), Mélissa Bezaz (Toddy) and Tamara Adame (XDEEP). Looking good divers! We do plan to create a free downloadable poster from this issue. Watch this space!

Please note, we realize this issue primarily represents the views of advocates who are making a case for sidemount. We haven’t focused on stories of divers who have had bad experiences with sidemount or spent much ink delving into its downsides, to the extent that these exist. Consequently, I invite readers who feel so moved to submit their views and or experience, call it, “The Trouble With Sidemount ” or “Never Do This is Sidemount..” . I’m joking about the titles but serious otherwise. We will happily run thoughtful stories. Let’s get a conversation going.

Finally, we would like to acknowledge that as human diving journalists and artists on deadline, we have likely made errors and omissions, and/or failed to identify important items that our geeky readers will no doubt discover. Our apologies in advance. If you do find any errors, omissions, or needed tweaks, please let us know, and we will endeavor make corrections. Thank you.—Michael Menduno/M2

Please take a minute and complete our new: Sidemount Diving Survey. We will report the results in a coming issue.

Use the following navigation links to dive into your favorite configurations 

Cave Diving Group

Dive Rite Nomad Ray

Halcyon ZERO GRAVITY™ Sidemount System

Hollis Katana 2

Razor

Toddy Style

XDEEP Stealth 2.0 Tec

  • Halcyon Sidemount
  • Fourth Element
  • DIVE RITE

Cave Diving Group (CDG) Sidemount System 

The CDG sidemount system has evolved many times since the 1960s but it’s still a lightweight system for diving sump’s generally found after significant dry caving. The important thing to remember is that it is not just one system. Each diver will have a slightly differently made harness but basically doing the same thing. 

Photos courtesy of the CDG.
Weight System
  • Traditionally the weights go around the waist on a CDG harness, a more modern version of the CDG harness such as the RMTD harness (in the photo) weights can be fitted down the spine. 
Harness
  • The harness itself is a simple design with minimal adjustment but designed to walk or cave while wearing wetsuits and small cylinders. It can also be used with larger cylinders. Steel cylinders are the norm for uk cave diving. The harness has fixed D rings and no sliding D rings for use with Aluminium cylinders. 
  • Some CDG harnesses are adapted to use with vertical access equipment (SRT) so the caver/diver can descend the vertical dry cave then use the same harness to dive. 
BCD/Wing
  • The CDG harness has no wing, because generally buoyancy is not required when using wetsuits and small cylinders in sumps. It was common for divers in British Sumps when using drysuits to use the suit for buoyancy and use no wing. In more recent years a small wrap around wing such as the X deep classic or home made equivalent can be easily added if the diver is using bigger cylinders or carrying equipment through the sump to further dry cave exploration and requires buoyancy.
Commentary

The CDG harness is designed to take weight loading on the divers’ shoulders and hips. Karabiners are generally used for attaching cylinders to the harness. A bolt snap is not a weight loading piece of equipment and should not be used to lower equipment down and then up vertical sections of dry cave, karabiners also work when covered in mud or grit! It’s not a harness that will get cylinders in that perfect internet trim but it is a harness designed to explore flooded cave sections found a long way underground. All modern harnesses took the sidemount system from the original Cave Diving Group harness design. 

Dive Rite Nomad Ray

The Nomad Ray is the latest sidemount system offering from Dive Rite. It includes a number of notable upgrades to the Nomad range and was designed to be easily adjustable, suitable for a range of body types and diving applications, including the use of both steel and aluminum cylinders.

Weight System
  • The Nomad Ray has three padded, internal pockets each of which can hold up to 5 lbs/2.3 kg of either hard or soft weight.
  • The weight pockets are located on the back of the wing and accessed via a zipper, making for easy weight adjustments while fitted.
Photos courtesy of Dive Rite.
Harness
  • The harness consists of independent shoulder, waist/hip, and crotch straps each of which are adjustable to fit the system to a variety of diver body types.
  • The harness incorporates custom hardware including two fixed angled D-rings on the shoulders, two fixed angled D-rings on the waist/hip strap plus, two sliding waist D-rings, two chest bungee-retainer slides, two rear drop D-rings for primary tank attachment, and one “dog-bone” crotch strap double D-ring for accessories, plus a DPV D-ring.
  • The harness is in Y configuration and attaches to the BCD/wing via woven D-rings at the top and through woven loops and screwed connection at the bottom.
  • For the fashion conscious, the wing comes in six colors.
BCD/Wing
  • The BCD wing is shaped to provide lift at the lower lumbar region. It comprises a Denier outer shell with an inner bladder and has 42 lbs/19 kg of lift.
  • The upper backside panel is abrasion-resistant for restrictions.
  • It incorporates a standard inflator that can be routed from the left (standard) or right side.
  • The BCD includes two pull dumps which are also OPVs. One is located at the inside top center of the wing with a left shoulder pull dump activated via a sheathed cord. The second is located at the bottom left of the wing. The locations of the dumps may require an alteration of diver position to dump all of the gas from the wing e.g. roll to the right to dump from the left side lower dump. Note this would also align with dumping gas from a drysuit. 
  • “Belly-band” bungees locate and wrap the outer wing extremities to the diver’s body. The bungee includes a bungee hook attachment and two wing grommets for easy and quick adjustments by simply moving an overhand knot on the bungee.
Commentary

The Nomad Ray is a significant upgrade for Dive Rite and evolving to meet the needs of modern sidemount divers. In particular, the easy-access weight system, shoulder dump, easy-to-adjust “belly-bungee,” plus the method of attaching the harness and the independent crotch strap to the wing, are notable improvements.

Halcyon ZERO GRAVITY™ Sidemount System

Halcyon’s Zero Gravity sidemount system was a collaborative creation with our Mexico distributor, Zero Gravity. The Zero Gravity system puts the buoyancy over the hips and along the sides of the rib cage where buoyancy is desired. Extremely streamlined, the air chamber positioning gives it a flat profile on the back of the diver. The Zero Gravity is suited for double aluminum 80’s and a wetsuit or small steel cylinders used with dry suits and heavier undergarments. The Zero Gravity features an adjustable harness, and an optional weight pouch that will hold up to 15 lbs./6.8 kg, and optional inflator placements on the right or left side.

Weight System
  • The added weight attachment is designed and built to lay on the diver’s back in line with the spine. Like our traditional weight options, this allows the diver to keep perfect trim while adding weight. With the three-pocket design, you can add up to 5 lbs/2.3 kg in each pocket as needed and disperse them at different placements for that balanced distribution. The velcro additions allow for secure storage and keep even soft lead pouches from moving around while diving. 
Top left and right photo courtesy of Halcyon Dive Systmes.
Harness
  • A harness system with multiple point adjustment is styled after the standard backplate harness, with the lower portion of the strap going behind the diver, allowing for greater freedom of movement and comfort, especially for the women in the diving. This harness system is easily changeable when needed over time, allowing the diver to modify the colors of the webbing if desired for personal customization.
  • The newly redesigned door handles provide divers with several options when choosing the right cylinders and placement. With the added grommets, the diver can adjust the door handles into three different locations on the back, as is, higher, or in towards the diver’s back. This placement is essential when setting up the cylinders. The added feature of using curved door handles over traditional square door handles is that when the cylinders are clipped to the system, the bolt snaps do not snag or get hung up in a corner. This keeps the cylinders and the bolt snaps in a free space for easy reaching, clipping, and removing as needed throughout the dive. 
  • The adjustable bungees make it easy to use with different regulator configurations, whether the regulator is pointed up or down. The waist strap D-rings on the right and left hip allow for AL80’s to be clipped forward as they become buoyant. We achieve this with a non-fixed D-ring by adding an O-ring to the design. This allows the D-ring to be in an upright position for easy finding and clipping while at the same time allowing the D-ring to move freely if in a tight passage or corridor without becoming a snag point. 
  • The uniquely positioned cylinder bungee runs across the back of the system and diver giving you more stretch when wrapping your valves while keeping your cylinders high, tight, and secure. This placement of the bungee allows the diver to adjust the bungee length very easily, whether in training or for the more experienced sidemount divers. This bungee is very easy to change out by the user if they prefer a lighter or heavier bungee without compromising the design of the system.
BCD/Wing
  • The streamlined design with a unique U-shaped bladder provides an almost free and clean back that reduces your profile and drag. The U-shaped bladder allows stable, uniform lifting along each side of the diver where they need it and across the rear of the diver so they have adequate lifting potential without sacrificing profile and trim. This keeps the profile of the diver very low enabling them to access smaller passages without rubbing the bladder. Top to bottom while trim position does not change even as the bladder is fully inflated. This was a key component in the design for low-profile passages and doorways.
Commentary

“As an avid sidemount diver and explorer in North Florida, I have used a variety of side mount systems on the market. It wasn’t until I dived the Zero Gravity system, that I was able to pass through several low passage tunnels without feeling the top of the system scraping along the way. The low profile of the system, even when fully inflated, allowed me as the diver, to keep a low profile in the cave system. This truly became a game changer when it came to exploring new tunnels.” Orie Braun, Halcyon Sales Manager

Hollis Katana 2

The Katana 2 is the latest sidemount offering from Hollis and brings them into line with the other top contenders in the sidemount space.

Designed with support from cave explorer Edd Sorenson, the Katana 2 incorporates a number of innovative features including a “Quick-Fit” system for easy adjustment, the ability to configure as a H or Y style harness, out of the box support for the KISS Sidewinder, and a BCD top dump valve with shoulder pull.

Photo courtesy of Melodie Trevino.
Photo courtesy of Hollis.
Weight System
  • The Katana 2 weight system features a drop-in Velcro pouch design with 4 x 5 lbs/2.3 kg pockets along the spine. The spine positioning of the weight system can assist with trim adjustment as required.
Photos courtesy of Hollis.
Harness
  • The Katana 2 sidemount harness features an innovative “QFS” Quick Fit System which allows users to easily tailor the one-size-fits-all harness to their specific size.
  • The design also allows for either an “H” or “Y” style harness configuration. H-style is most commonly used when donning the system in a drysuit and can be less restrictive, while the Y-style is most similar to a backplate configuration and provides a snug but comfortable fit when properly sized. Both are suitable for various types of diving and user preferences.
  • The Katana 2 is the first harness with attachment loops built-in to support the popular KISS Sidewinder CCR and similar units now in the marketplace.
BCD/Wing
  • The wing lift capacity is 40 lbs/18 kg and features a tapered design to keep the diver profile as low as possible, without the “turtle shell effect” which causes drag. 
  • The top of the wing is two- dimensional, versus the bottom which has a three-dimensional design for targeted lift placement to promote better horizontal trim. D-ring attachment points for accessories are placed on both sides of the wing, which are easier to reach than the traditional crotch strap attachment. The wing is also available in either a single or dual bladder option.The Katana 2 wing has a 1000D Nylon Cordura outer shell for abrasion and puncture resistance, and a 420D nylon inner bladder. The wing includes a top dump with shoulder pull that allows venting of gas while in trim.
Commentary

“The coolest thing about the Katana 2 is the way it ships out of the box. You can customize it to your preference thanks to the innovative harness and adaptable wing design. Technical divers love to customize their gear … and they can make all of the adjustments themselves without permanent modifications on this rig.” Hollis Brand Manager, Nick Hollis

Razor

The Razor Harness embodies simplicity and elegance with just two continuous pieces of webbing and one closure point. Its design is minimalistic, yet strong, rugged, and reliable. The harness offers a comfortable and custom fit for divers of all sizes, thanks to its quick and easy setup and adjustable, standardized hardware.

Weight System
  • The Razor Harness allows precise placement of weights for optimizing trim. Additional weights can be easily added to the Razor Pocket Weight, the Waist Strap, or both if more than 13 lbs/6 kg are needed.
Harness
  • All attachment points, such as D Rings, on the Razor Harness can be swiftly and easily adjusted for personalized equipment placement. Each Shoulder Strap/Waist Strap can be adjusted at the Mini Back Plate.
  • The length of the Lumbar/Crotch Strap can be adjusted at the Delta Shoulder Plate. The height of the Waist/Hip strap can be adjusted at the Mini Back Plate. Extra attachment points can be added if necessary.
BCD/Wing
  • The BCD/wing is simple to use and attach or detach from the Razor Harness, secured by just two button head bolts. The mounting position can be easily adjusted to accommodate different-sized divers.
  • The wing is exceptionally durable, constructed with three layers: two outer layers of abrasion-resistant 1000 denier ballistic nylon with a layer of heavy gauge polyurethane in between. The wing is ultrasonically welded, and all edges are finished with edging tape. All attachment points feature reinforced grommets for added strength.
  • The primary wing provides 45 lbs/20 kg of lift and is equipped with a low-profile, heavy-duty manual dump/OPV valve from DSS, along with a standard power inflator. This allows inflation of the primary wing either using the power inflator or orally.
  • The fittings for the dump valve and corrugated hose/power inflator are interchangeable, enabling divers to use them on either the left or right side of the wing according to their preference.
  • The Redundant wing also provides 45 lbs/20 kg of lift and is fitted with a very low-profile “coin” dump/OPV valve and oral inflator.
Commentary

The Razor Harness and BCD/Wing system offers divers a sleek and minimalist design without compromising on functionality or durability. Its simple yet robust construction provides a comfortable and secure fit for divers of all sizes. The weight system allows for precise weight distribution to optimize trim, while the adjustable attachment points offer personalized equipment placement. The BCD/wing is easy to attach and remove, and its rugged three-layer construction ensures long-lasting performance. With interchangeable fittings and low-profile valves, the system offers versatility and convenience. Overall, the Razor system combines simplicity, reliability, and versatility, making it an excellent choice for divers seeking a streamlined and efficient diving experience.

Toddy Style

The Toddy Style Sidemount System offers divers a unique and innovative approach to sidemount diving. Its “sandwich” style weight system, adjustable harness, and thoughtful design elements enhance comfort, balance, and ease of use. With the ability to customize weight distribution, easily adjust harness straps, and utilize specialized clips, this system provides divers with a streamlined and efficient sidemount experience. The Toddy Style Sidemount System is a reliable choice for divers seeking enhanced maneuverability and minimal drag during their underwater explorations.

Weight System
  • The “sandwich” style system consists of a thin backplate that holds the wing together while protecting it from accidental restriction impact. A backmount-style backplate finishes the sandwich-style system. These backplates also act as a weight system. If the user desires, additional backplates can be added, fitting perfectly on top of each other and distributing the weight evenly over the diver’s back, rather than concentrating it on the spine. This allows for better balance and reduces the “rotation” effect.
  • For divers who want to travel with the system, there is a more traditional sidemount weight system. It consists of a weight holder that can be added to the backplate, again placed away from the spine, to enhance balance and minimize the “rotation” effect.
  • Finally, there is a flexible butt extension with a special mount for precise addition of weight to achieve optimal trim.
Harness
  • The system’s shoulder straps are easily adjustable using a Velcro system that secures it in place with wide elastic wraps.
  • The shoulder straps are connected by a removable bungee that keeps them in place when divers turn on their side. It also acts as a temporary clipping place for items such as pigtail marker clips, lights, etc.
BCD/Wing
  • The inflator extends from behind, near the neck area, resembling the position in a backmount system. There is no valve, but instead, a direct, extremely durable, and resistant connector. This eliminates a fragile point present in all other systems.
  • The wing’s bladder is easily accessible and can be changed even in the field.
Regulator accessories
  • The system also utilizes custom-made clips for the regulator’s second stages. These clips allow divers to secure the regulators to their chest D-rings, resulting in a more streamlined profile and easy access in case of an emergency.
Commentary

The Toddy Style Sidemount System stands out as a top choice among cold water backmount divers looking to transition smoothly to sidemount diving. It offers a convenient alternative because of its compatibility with both existing regulators and hose lengths, as well as not requiring dedicated cylinders. The presence of a backplate, reminiscent of traditional backmount setups, provides a sense of familiarity and ease of adaptation. Whether for cold water diving or any other diving environment, the Toddy Style Sidemount System offers divers a reliable and comfortable sidemount configuration to enhance their underwater experiences.

xDEEP STEALTH 2.0 Tec

The STEALTH 2.0 TEC was designed for deep decompression diving and extended cave penetrations. It provides 42 kbs/19 kg of lift to support multiple cylinders required for advanced diving. It effectively manages gas movement and position to ensure stability, balance, and trim at any inflation level.

Photos courtesy of Mekan Photography.
Weight System
  • The Xdeep Stealth 2.0 features a customizable central weight system located on the spine. It can be adjusted to accommodate the maximum weight preferred by the diver.
  • Additionally, there are droppable weight pockets available in different sizes: S-size (2 x 4.4 lbs/2 kg), M-size (2 x 6.6lbs/3 kg), and L-size (2 x 13.2 lbs/6 kg).
  • For fine-tuning trim purposes, there are also trim pockets in M-size (2 x 4.4 lbs/2 kg) or L-size (2 x 6.6lbs/3 kg) that can be placed anywhere on the harness.
Harness
  • The harness is one universal size with a wide adjustment range. It consists of independent shoulder, waist/hip, and crotch straps, each made of different thicknesses and fully adjustable with tri-gliders to fit various diver body types.
  • The harness utilizes custom hardware, including two fixed large D-rings on the shoulders, two fixed D-rings on the waist/hip strap, and two rubber sliding waist D-rings (metal version available as an upgrade).
  • It also has two rear drop square attachments for primary tank attachment, a crotch strap D-ring for accessories below the dump valve, and a DPV D-ring.
  • The Y-configured harness attaches to the BCD/wing at the top.
BCD/Wing
  • The BCD wing is designed to provide lift at the lower lumbar region. It is constructed with a Cordura 1100 dTEX outer shell fabric and a Nylon 440 dTEX inner bladder with a 0.2 mm TPU coating. It offers 42 lbs/19 kg of lift.
  • The upper backside panel is abrasion-resistant for durability.
  • The BCD includes an inflator available in three sizes, with a standard length of 16″/41 cm (14″/36 cm and 19″/48 cm available upon request).The inflator can be routed from the left (standard) or right side.
  • One central low pull dump also functions as the system’s OPV.
  • Bungees keep the wing attached to the waist harness, ensuring a snug fit around the diver’s body.
  • The wing’s color combinations can be customized on Xdeep’s website: https://tuneup.xdeep.eu
Commentary

The XDEEP Stealth 2.0 is a well-designed and versatile diving system that caters to the needs of deep decompression diving and extended cave penetrations. Its robust weight system, adjustable harness, and efficient gas management make it a reliable choice for advanced divers. The BCD/wing combination offers ample lift and durability, while the customizable options allow divers to personalize their gear. Note that the modular system can also be configured from recreational sidemount. Overall, the XDEEP Stealth 2.0 combines functionality, comfort, and performance, making it a strong contender for serious diving adventurers.

Please Take a Minute And Complete our New: Sidemount Diving Survey. We will report the results in a coming issue.

Steve Davis  is the producer and host of the acclaimed podcast, “Speaking Sidemount,” author of the books, “The Canterbury Wreck – A Diver’s Guide” and the eBook, “Sidemount Fundamentals.” He is a specialist sidemount diver/instructor, dives exclusively in sidemount, and is the principal instructor and founder of Sidemount Pros. Steve travels the world diving sidemount in caves, wrecks, and open water. Through Speaking Sidemount Steve’s mission is to share his passion for sidemount diving and provide a medium for the world’s top sidemount divers, instructors, and explorers to share their experiences and thoughts on sidemount diving.

Stratis Kas, a Greek-Italian professional diving instructor, photographer, film director, and author, has spent over a decade as an esteemed Advanced Cave instructor, leading expeditions to extreme locations worldwide. His impressive diving achievements have solidified his expertise in the field. In 2020, Kas published the influential book “Close Calls,” followed by his highly acclaimed second book, “CAVE DIVING: Everything You Always Wanted to Know,” released in 2023. Accessible on stratiskas.com, this comprehensive guide has become a go-to resource for cave diving enthusiasts. Kas’s directorial ventures include the documentary “Amphitrite” (2017), shortlisted for the “Short to the Point” Film Festival, and “Infinite Liquid” (2019), which explores Greece’s uncharted cave diving destinations and was selected for presentation at Tekdive USA. Kas’s expertise has led to invitations as a speaker at prestigious conferences, including Eurotek UK, Tekdive Europe and USA, Tec Expo, and Euditek.  For more information about his work and publications, visit stratiskas.com.

Michael Menduno/M2 is InDepth’s editor-in-chief and an award-winning journalist and technologist who has written about diving and diving technology for more than 30 years. He coined the term “technical diving.” His magazine “aquaCORPS: The Journal for Technical Diving” (1990-1996) helped usher tech diving into mainstream sports diving, and he produced the first tek.Conferences and Rebreather Forums 1.0 & 2.0. In addition to InDepth, Menduno serves as an editor/reporter for DAN Europe’s Alert Diver magazine, a contributing editor for X-Ray mag, and writes for DeeperBlue.com. He is on the board of the Historical Diving Society (USA), and a member of the Rebreather Training Council. Menduno is the organizer of Rebreather Forum 4.

  • Halcyon Sidemount
  • DIVE RITE
  • Fourth Element
Continue Reading

Trending