fbpx
Connect with us

Equipment

Heads Up Swimmers and Divers Who Swim

Wouldn’t it be great to have your essential swim metrics right in front of your face, so you wouldn’t have to slow down to steal a glance at the clock, or flick a wrist and read your swim watch? Now you can! (Never mind that agencies only require you to paddle 300-400m at a jellyfish pace—you do keep up your swimming don’t you??) Here InD exec editor Michael Menduno, a passionate swimmer, reviews the latest in performance swimming technology. Can diving be far behind?

Published

on

By Michael Menduno

I am a water person. I swim four to five days a week. I am a diver. I’m also a technologist and gearhead. So, when I saw the FORM ‘smart’ (augmented reality) swim goggles, I knew I had to try a pair.

FORM goggles offer the swimmer key user selectable metrics such as time elapsed; distance swam, split times, interval times, pace per 50/100 yards or meters, stroke rate/SWOLF, or even calories burned in a concise, bright-yellow heads up display that appears to float in your field of vision. Note that the metrics are based on the trailing length; they’re not instantaneous.  The heads up display also cleverly sequences metrics as the swim progresses. For example, it shows the new split time after the swimmer performs their turn. Also, the eyepieces are symmetric so that display can be positioned in either your right or left eye. 

As a result, you don’t have to stop swimming to look at your swim watch or deck clock for timing, and it counts your laps in case your early morning swim brain loses track. According to the company, the goggles free up your mental bandwidth so you can focus on your form, hence the name. Did I mention they currently have no competition?

FORM goggles can be readily set for lap swimming, intervals or drills (ah those kick sets!) with the two tiny toggle buttons on the side of the goggles; they don’t have GPS and so don’t work for open water swims. At the end of your workout, you save the swim using the menu buttons, and it’s uploaded to the companion app on your smartphone via Bluetooth, where it is stored and can be shared. Your swim data can also be uploaded to Strava or Training Peaks, though currently FORM is not integrated with Swim.com, which partners with the U.S. Masters Swimming (USMS) log. That’s where I upload my Apple watch swim data. 

Oh, and the goggles also talk to the Polar OH1 optical heart rate sensor, which can be fitted to the google straps, allowing the device to display your heart rate in real time. They can also upload heart data from a Garmin watch. All in all, FORM can only be described as a remarkable piece of engineering. 

Interestingly, when I first called the Vancouver B.C. Canada-based company to inquire about their goggles, one of my first questions was, “Are you also planning to offer an augmented reality diving mask?” NOT! 

FORM’s marketing director explained to me that there are an estimated 30 million swimmers in the U.S. and 240 million globally making it the largest sport in the world—roughly one to two orders of magnitude larger than diving, including both free and compressed gas divers—and that’s who they plan to focus on. That of course would include triathletes and Iron-people who swim too.

I also realize now that FORM’s secret sauce is a lot more than simply displaying computer data on an in-mask optics display. Though the diminutive optics screen, which is about the size of a 64GB SanDisk card, and the small thumb drive-sized computer positioned at the temples, could easily be incorporated in a diving mask. Shearwater and Thalatoo take note.

The Ghost In The Machine

FORM is the brainchild of 44-year old competitor swimmer cum mechanical engineer, Dan Eisenhardt. He first conceived of the idea for smart swim goggles for his MBA project in 2006, but the available technology, particularly the state of machine learning (ML), at that time made it infeasible. Instead, he and his colleagues created a heads-up display ski mask and went on to form a venture-funded start-up called Recon Instruments, which Eisenhardt incorporated in 2008. He eventually sold the company to Intel in 2015, after creating five generations of smart glass products. He left Intel in late 2016 to return to his original vision, creating a smart swim goggle.   

Compared to a swim watch, which is attached to a single ‘stroking’ appendage; detecting starts and stops and strokes—not the Irvine kind (inside joke)—from a device positioned on your head is arguably a harder problem. But FORM appears to handle it with aplomb. Eisenhardt told me that they want to be accurate to within 99% of the metrics and it’s rare to see a mistake. Interestingly the goggles were able to correctly detect my stroke (fly), when my Apple watch didn’t. More on that later.

At the heart of the goggles, is a three-axis accelerometer and a three-axis gyro that interprets what’s going on in the rest of the body i.e. doing freestyle, doing fly, cranking out 80 or 115 strokes a minute, burning calories, based on that sensor input. That’s where machine learning comes in. FORM trained its algorithms using machine learning, with actual data feeds from many different types of swimmers, including the award-winning University of British Columbia’s Thunderbirds swim team, who were all recorded with video cameras. The various types of movements were labeled and then fed back into the algorithms, which were then tweaked and tested again, etc. Rinse and repeat!

Eisenhardt compared machine learning to opening up a Pandora’s box. “We had no idea back then how hard it would be,” he said. “We would change something over here and it would get better, but then something over there would break. It was always a moving target so we had to find an optimum point based on our goals and objectives. That was a big one!”

Other challenges? “It ends up being a combination of things, a kind of an engineering matrix,” Eisenhardt explained. “Low-power optics, machine learning, and bulk; those were three massive constraints, above and beyond price. Because price, is actually the most important. You have to constantly have that price rationale in the background.” 

FORM goggles retail for US$199. By comparison, ordinary swim goggles sell for US$15-30 up to US$59 for my MAGIC5 custom-fit goggles. Of course, like many of my swimmates, I have accumulated quite a collection of goggles over time.

My Experience

I found downloading and setting up the FORM app and goggles was easy. The goggles are high quality with a soft sleeve and come with a selection of different sized nose bridges for an optimal fit. I found them very comfortable and watertight, and they didn’t fog. Though they weigh about twice that of an ordinary pair of swim goggles: 2.3 ounces/65 grams compared to about 1.3-1.5 oz/37-43 g, I didn’t notice any difference once they were on my face.

My first experience using the goggles in an outside pool was disappointing. While the heads up display and metrics, which I had positioned in my right eye, were brilliant, I had a hard time seeing out of my left eye. FORM’s lenses are barrel-shaped with a flat forward surface. For me, it looks like a sunglass lens in the middle of my field of view. What’s more is that I kept seeing what looked like cavitation bubbles along the flat surface. As a result, I felt like I couldn’t see the pool well. My view also looked a bit wonky when I approached the wall to turn. FORM says the goggles take a little getting used to. Yup! I tested them in two different outdoor pools with the same result.

I asked Eisenhardt about seeing cavitation bubbles. He said that only two other people out of hundreds or more reported this problem, both of them in outside pools; something about the light perhaps.  So I tested them again in an indoor pool. This was my fourth workout session with the goggles. The sunglass effect was definitely diminished, and though I still saw some cavitation bubbles against the glass, my visibility had improved, though not as good as my MAGIC5, which of course, does not include a heads up display. This made me think that with time my vision and or brain would adjust.

I mentioned discovering that the FORM goggles correctly identified my butterfly while my Apple Watch 4 did not. This is often a problem with the watch. It also has trouble identifying breaststroke. Even more interesting, when I compared my split times from my watch on swim.com to those of FORM (I was wearing devices during my trials), the times showed significant differences sometimes amounting to a few seconds. A little unnerving! How fast do I really swim?

This, of course, raises the question, “How accurate is the [name of device]?” The answer of course is, “Compared to what?” It would be useful to compare both to an electronic pad used in swimming comps.

I was already aware of timing problems with the watch. For example, ending a lap by touching with my [left] watch hand yields a different time than touching with my right. Eisenhardt said that FORM’s accuracy is based on matching swim data to video recordings to within a certain tolerance, which is how they derive their 99% accuracy figure. “It’s very rare that you would touch the wall and get a time where you’re like, oh, that doesn’t seem like the right time. It’s just a very rare event. It’s hard to say exactly how accurate we are, but we are definitely accurate enough for you to never have to second-guess a metric.”

So there you have it. I LOVE the FORM display and the data; however, I am not yet happy with the visibility. I wish it integrated with the Swim.com cloud and consequently my official USMS log. ;-( I am also now intrigued with interval and split times, and plan to do more investigation with both devices. Are the FORM goggles worth $199? Never mind how much I’ve already invested in swim goggles, does the money really matter for a sport one feels passionate about? I am going to keep swimming with FORM, and keep my watch on, for now.

Heads up people. Watch this space.

Additional Resources (from FORM)

https://www.formswim.com

https://www.youtube.com/c/formswim


Michael Menduno is InDepth’s executive editor and, an award-winning reporter and technologist who has written about diving and diving technology for 30 years. He coined the term “technical diving.” His magazine “aquaCORPS: The Journal for Technical Diving”(1990-1996), helped usher tech diving into mainstream sports diving. He also produced the first Tek, EUROTek, and ASIATek conferences, and organized Rebreather Forums 1.0 and 2.0. Michael received the OZTEKMedia Excellence Award in 2011, the EUROTek Lifetime Achievement Award in 2012, and the TEKDive USA Media Award in 2018.

Equipment

InDepth’s Rebreather Holiday Shoppers’ Guide

Making a list. Checking it twice. Gonna find out which ‘breathers are naughty or nice. That’s right! It’s time for InDepth’s Holiday Shoppers’ Guide. This year we make a deep dive into 23 models of back and side mounted rebreathers. So, get out that pre-dive checklist, and your rebreather gift certificate—you do have a gift certificate, don’t you?? Ho, Ho, Hose!

Published

on

By

by Michael Menduno & Amanda White

Holiday images by Jason Brown, BARDO CREATIVE

Sport diving rebreathers have come a long way since storied explorer Bill Stone trialed his 80 kg/176lb fully-redundant “Failsafe Rebreather For Exploration Diving” (F.R.E.D.), and spent a cool 24-hours underwater as part of his paradigm-shifting 1987 Wakulla Springs Project. In retrospect, looking back over the last 30-some years, the “Technical Diving Revolution,” which emerged in the late 1980s to late 1990s, was ultimately about the development and adoption of rebreather technology. 

Dr. Bill Stone’s manned trial of F.R.E.D. at Wakulla Springs (1987). Photo courtesy of the US Deep Caving Team

However, it took the fledgling tech community at least a decade to adapt mixed gas technology for open circuit scuba, including establishing the necessary supporting infrastructure, which was the first and necessary step in the move to rebreathers. A little more than a decade after Stone showcased FRED, British diving entrepreneur Martin Parker, then managing director of AP Valves, launched the “Buddy Inspiration,” the first production closed circuit rebreather designed specifically for sport divers, earning him the moniker, the “Henry Ford of Rebreathers.” [The brand name later became AP Diving] KISS Rebreathers followed a little more than a year later with its mechanical, closed circuit unit, now dubbed the KISS Classic. The rest as they say, is history, our history. 

Buddy Inspiration advertisement from 1998. Courtesy of AP Diving.

Today, though open-circuit mixed gas diving is still an important platform, rebreathers have become the tool of choice for deep, and long exploration dives. For good reason, with a greatly extended gas supply, near optimal decompression, thermal and weight advantages, bubble-free silence, and let’s not forget the cool factor, rebreathers enable tech divers to greatly extend their underwater envelope beyond the reach of open circuit technology. 

As a result, divers now have an abundance of rebreather brands to choose from. Accordingly, we thought it fitting this holiday season to offer up this geeky guide for rebreather shoppers. Want to find out whose breathers are naughty or nice? Here is your chance.

Your Geeky Holiday Guide

The idea for this holiday guide was originally proposed to us by Divesoft’s U.S. General Manager Matěj Fischer. Thank you Matěj! Interestingly, it doesn’t appear to have been done before. Our goal was to include all major brands of closed circuit rebreathers in back mount and sidemount configuration in order to enable shoppers to make a detailed comparison. In that we have largely succeeded. We  also included Halcyon Dive Systems’ semi-closed RB80 and more recent RBK sidemount unit, which are both being used successfully as exploration tools. 

Absent are US-based Innerspace Systems, which makes the Megalodon and other models, as well as Submatix, based in Germany, which manufactures the Quantum and sidemount SMS 200, neither of which returned our communications. Expedition One, which makes the Titan, declined our invitation to participate, as they recently discontinued their TITAN CCR—they will be coming out with a replacement unit, the TITAN Phoenix CCR in the near future. We did not include the MARES Horizon, a semi-closed circuit rebreather that is aimed at recreational divers. No doubt, there may be brands we inadvertently missed. Our apologies. Contact us. We can update.

It’s The Concept, Stupid

The plan was to focus on the feature sets of the various rebreathers to provide an objective means to compare various units. But features by themselves do not a rebreather make. As Pieter Decoene, Operations Manager at rEvo Rebreathers, pointed out to me early on, every rebreather is based on “a concept,” that is more than just the sum of its features. That is to say that the inventors focused on specific problems or issues they deemed important in their designs; think rEvo’s dual scrubbers, Divesoft’s redundant electronics, or integration of open and closed circuit in the case of Dive Rite’s recently launched O2ptima Chest Mount. Shoppers, please consider that as you peruse the various offerings. My thanks to Pieter, who helped us identify and define key features and metrics that should be considered.

Though not every unit on the market has been third-party tested according to Conformitè Europëenne (CE) used for goods sold in the European Union, we decided to use CE test results for some of the common feature benchmarks such as the Work of Breathing (WOB), and scrubber duration. For vendors that do not have CE testing, we suggested that they use the figures that they publicize in their marketing materials and asked that they specify the source of the data if possible. As such, the guide serves as an imperfect comparison, but a comparison nonetheless.

Santa’s Little Helper: Meet Rufus, BARDO’s Chief Muse Officer (CMO)

Also, don’t be misled by single figures, like work of breathing or scrubber duration as they serve only as a kind of benchmark—there is typically a lot more behind them. For example, whether a rebreather is easy to breathe or not is a function of elastance, work of breathing (WOB) and hydrostatic imbalance. In order to pass CE, the unit must meet CE test requirements for all three issues in all positions from head down, to horizontal trim, to being in vertical position (Watch that trim!), to lying on your back looking upwards. It’s more difficult to pass the tests in some positions versus others, and some units do better in some positions than others. 

The result is that some of the feature data, like WOB, is more nuanced than it appears at first glance. “The problem you have is people take one value (work of breathing for instance) and then buy the product based on that, but it just isn’t that simple an issue,” Martin Parker explained to me.  “It’s like people buying a BCD based on the buoyancy; bigger is better, right? Wrong! It’s the ability of the BCD to hold air near your centre of gravity determines how the BC performs. With rebreathers you can have good work of breathing on a breathing machine only to find it completely ruined by it’s hydrostatic imbalance or elastance.”

Due to their design, sidemount rebreathers are generally not able to pass CE requirements in all positions, and consequently, none of them have CE certification. However, that does not necessarily mean that they haven’t been third-party tested. 

Note that the guide, which is organized alphabetically by manufacturer, contains the deets for each of their featured models. In addition, there are two master downloadable spreadsheets, one for back mounted units and one for sidemount. Lastly, I’d also like to give a shout out to British photog phenom Jason Brown and the BARDOCreative Team (Thank you Georgina!), for helping us inject a bit of the Xmas cheer into this geeky tech tome [For insiders: this was Rufus and Rey’s modeling debut!]. Ho, ho, hose!

With this background and requisite caveats, we are pleased to offer you our Rebreather Holiday Shoppers’ Guide. Happy Holidays!!

Backmount Rebreathers

* In 2005, AP Diving launched its Vision electronics with In-Plane Switching (IPS) which enhances colour and visibility
**Typical scrubber duration using AP Tempstik increases practical duration to more than double CE test rate figures – as the AP Tempstik shows scrubber life based on actual work rate, water temperature and depth.
*** The work of breathing is the effort required to push gas around the breathing circuit BUT that figure alone is meaningless without knowing two other parameters: Hydrostatic load and elastance. Note that AP Diving rebreathers meet the CE requirements in all diver attitudes for both Hydrostatic Imbalance 0 degrees (horizontal, face down) and Hydrostatic Imbalance +90 degrees (vertical, head up.)
**** APD’s handset offers a “dual display” feature showing data from both controllers on the same handset. The user can also see the gradient factors chosen and the mVolt outputs of the cells by holding a button down.
*Tested with standard DSV, 6l OTS counterlungs, Upright/face forward, 40 m depth, 40.0 lpm RMV, Air diluent
**Tested with standard DSV, 45° head up/feet down orientation, 40 m depth, 40.0 lpm RMV, Air diluent
*** Micropore ExtendAir Cartridge:
180 liters of CO2 @ < 50 deg F [<10 C] (130 minutes @1.35lpm CO2)
240 liters of CO2 @ 50-70 deg F [10-20C] (180 minutes @ 1.35lpm CO2)
300 liters of CO2 @ >70 deg F [>20C] (220 minutes @ 1.35lpm CO2)
Test Parameters: 40 lpm RMV 1.35 lpm CO2130 fsw (40 m) depth Granular duration may be similar, but can vary greatly depending upon the type of granular and packing technique
* Divesoft will offer an upgrade for existing Liberty users

* CisLunar series, MKVI 2009, SE7EN 2013, SE7EN+ 2019
** 40 m coldwater EN14143
*** Backmounted Trimix 10/70, 40M test: Backmounted Air
**** SE7EN+ Sport EU incl (harness, wing, computer, cylinders and sensors)
Rey says he’s sticking to open circuit. What’s a Santa to do?

Sidemount Rebreathers

* For a tour of KISS rebreathers see: https://www.youtube.com/watch?v=lelpTfGSYeE
https://www.facebook.com/T-REB-678683672151944/

 Download our two master spreadsheets, one for back mounted units and one for sidemount to compare rebreathers.

Special thanks to Amy LaSalle at GUE HQ for her help assembling the feature spreadsheets.


Michael Menduno is InDepth’s editor-in-chief and an award-winning reporter and technologist who has written about diving and diving technology for 30 years. He coined the term “technical diving.” His magazine aquaCORPS: The Journal for Technical Diving (1990-1996), helped usher tech diving into mainstream sports diving. He also produced the first Tek, EUROTek, and ASIATek conferences, and organized Rebreather Forums 1.0 and 2.0. Michael received the OZTEKMedia Excellence Award in 2011, the EUROTek Lifetime Achievement Award in 2012, and the TEKDive USA Media Award in 2018. In addition to his responsibilities at InDepth, Menduno is a contributing editor for DAN Europe’s Alert Diver magazine and X-Ray Magazine, a staff writer for DeeperBlue.com, and is on the board of the Historical Diving Society (USA)


Amanda White is the managing editor for InDepth. Her main passion in life is protecting the environment. Whether that means working to minimize her own footprint or working on a broader scale to protect wildlife, the oceans, and other bodies of water. She received her GUE Recreational Level 1 certificate in November 2016 and is ecstatic to begin her scuba diving journey. Amanda was a volunteer for Project Baseline for over a year as the communications lead during Baseline Explorer missions. Now she manages communication between Project Baseline and the public and works as the content and marketing manager for GUE. Amanda holds a Bachelor’s degree in Journalism, with an emphasis in Strategic Communications from the University of Nevada, Reno.

Continue Reading

Subscribe

Submerge yourself in our content by signing up for our monthly newsletters. Stay up to date and on top of your diving.

Thank You to Our Sponsors

Education