Connect with us

Cave

Close Calls: I Ripped My Drysuit a Kilometer Back In The Cave

It’s a potentially life-threatening equipment failure that most divers have thought but, but outside of minor leaks, few have experienced, and almost none have trained for. It certainly got the attention of photographer Fan Ping as he felt the chilly Florida spring water rush into his suit. Here’s how he survived the dive.

Published

on

By Fan Ping

🎶🎶 Pre-dive Clicklist: 平凡之路 (The Ordinary Road) by Pu Shu

Finally I had to say goodbye to my six-year old drysuit, in an unexpected way.

It was a cloudy day in January. There were not many people at Ginnie Springs in Florida as the temperature there was still too cold for the inflatable unicorns and flamingos with their masters in swimsuits that you see so often at the park. My friend Derek Dunlop and I met at the parking lot in front of Devil’s underwater cave system, and we started preparing for our photo shoot in Berman’s Room, at about 1006 m/3400 ft on the main line.

I sidemount my camera to the right.

As usual, we had first talked about the shooting plan with a storyboard and had decided to go in with six video lights since Berman’s Room is pretty big and fairly tall. Then we started preparing our rebreathers, but things did not go smoothly. Derek had a leak in his DSV, and then one of his O2 sensors stopped working for an unknown reason. Fortunately, he managed to fix both problems, but by then it was almost 2 pm already. I am a firm believer of ‘Rule of Three’ (If you have three major problems before you start the dive, then you should quit for the day), but I am also a photographer who was eager to capture the last piece of my Ginnie Springs project.

Berman’s Room
The Henkel

We got on our scooters and started diving. When I have many lights, I usually put two on the camera, which is side mounted on my right like a tank, two in my left thigh pocket, and the rest on my buddy. We dropped our own sidemount bailout tanks at Stage Bottle Rock at 1800’ and arrived at our destination 45 minutes into the dive as planned. We spent about 60 minutes playing with the lights and shooting, and then turned the dive happily at 105 minutes.

I was leading on the way out, riding in the high flow and thinking about the photos. When I passed the restricted tunnel before the Henkel restriction, the third problem of the day finally came. Scootering with the flow at perhaps  1 m/sec, the corner of my left pocket on my drysuit got caught on the tip of a rock and ripped a 3cm x 3cm hole. I could feel the chilly water flooding into my suit, so I stopped immediately, and within 10 seconds I lost my trim and buoyancy and was kneeling on the floor like in my Open Water class.

I told myself to “stop and think!” As in all the training we have done, I realized this was not an immediate life threatening situation, but the snowball could start rolling if I did not act correctly in a calm way. I checked my computers and used my primary light to get Derek’s attention and told him my drysuit was done for with the universal hand signal. Then I put some gas into the wing, but I was still on the floor. With more gas into the drysuit, I started moving again, in a vertical fashion. 

As you all can imagine, I had to put myself on the floor again at the Henkel. It is not extremely tight if you choose the right path, but with the DPV and camera and the Global Underwater Explorers (GUE)-configured JJ-CCR on my back, I was worried that I might not get out of the cave smoothly. Usually I stay very calm during a dive, but the depth was 32 m/105 ft, and the clock was ticking I was unsure of what would happen with that hole in my drysuit. I dumped all the gas in my suit and carefully crawled out of the restriction. Luckily, visibility is not a problem in Ginnie’s main tunnel because of the flow, and I can verify that a v-drill is easier when you have your belly on the ground.

To be honest, this was when I just completely got out of the panic mode. I knew I was getting closer to the surface, and I would be fine as long as I stayed focused. I inflated my suit, but as soon as I tried to stay horizontal, the gas leaked out from the hole. So, I put more gas into the loop and started being dragged by my scooter like SLAVE I in Star Wars, while still having to kick the whole time against the weight of my feet. 

That was when I started to feel cold. I could not imagine what this would have been like if I had been in a freezing cold cave like Orda, where the low temperature would have already killed me. All I could do was focus on scootering and choosing the taller passage if possible, in order to avoid messing with my buoyancy. Derek retrieved my bailout tank on the way out, and we made it back to the cavern in about 145 minutes, which is almost twice the time it usually takes.

My dive profile

There was no one else in the cavern when we started doing our longer-than-planned deco. I inflated my suit and knelt down on the rock at 6 m/20 ft so I could at least keep my torso relatively dry. I was getting colder and colder since I was not moving at all, but thanks to the 21ºC/70ºF degree spring water, my mind was still clear enough to think about getting a rental drysuit at Extreme Exposure and coming back in two days. After about 40 minutes of deco, we got back to the surface, and I had a really hard time walking back to my truck with all the water in my suit. What is worse, even the clouds started crying for me (or perhaps for my drysuit).

Drysuit full of water with the hole. Notice the rip on the top of the left pocket.

A fully flooded drysuit is something we always had talked about in our training but would never practice on purpose. When it actually happens, one can lose his trim and buoyancy within seconds, resulting in much more serious problems; for example, navigation, extended deco time, and hypothermia. 

In retrospect, I think there are 3 reasons why it happened to me:

  1. I was diving a Kirby Morgan M48 Mod-1 full face mask to facilitate better communication with my model, but the vision was relatively limited,and I did not pay enough attention to the surroundings;
  2. I had two big video lights in my pocket, and the pocket was exposed as I dropped my sidemount bailout tank;
  3. I should have gone slowly or maybe swum in more restricted areas.

I consider myself lucky that I got nothing but cold and lost nothing but an old drysuit, and thanks to Derek who made the process easier. It could have been a totally different story in another cave with a silty bottom or freezing cold water. However, out with the old, in with the new; it was time to get another drysuit.

Have you or a teammate ever had a “close call” while diving? Please take a few minutes to complete our new survey: Close Calls in Scuba Diving 


Fan Ping is a Chinese photographer and filmmaker based in Atlanta, Georgia, USA, and is dedicated to showing the beauty of the underwater world to people through his lens. He is specialized in combining artistic elements with nature and complex lighting skills in overhead environments, and this artistic style has brought him international acclaim, including awards from many major underwater photo/video competitions. You can follow his work on Facebook and Instagram: Be Water Imaging.

The best of Fan Ping’s work can be purchased at: www.bewaterimaging.com

Cave

Plan The Shoot, Shoot The Plan

Gas planning is an essential part of tech diving but how does it apply if you’re planning to conduct a photoshoot in multiple specific locations in the overhead environment of a cave? Arguably one of the most artful cave photographers today, and a high-level tech diver, Fan Ping explains how he calculates gas requirements when making pretty pictures in the dark!

Published

on

By

By Fan Ping. Header image: Bedding Plane at Jug Hole by Fan Ping.

Plan the dive, dive the plan. That’s something I have been hearing since the beginning of my diving career but never really mastered until I started my cave diving training with Global Underwater Explorers (GUE). I was surprised by how powerful dive planning can be as a tool, down to a minute, a meter and a few bars. Of course, there is flexibility, but the whole point is you will be aware of what is going to happen next, and have control over the entire process of the dive.

Planning can also apply to underwater cave photoshoots and filming. As a fulltime underwater photographer and director of photography (DP), I plan my shoots in the caves all the time and teach it as a part of my Underwater Cave Photography Course. It definitely makes my job much safer and more efficient. There are two parts of the shoot plan: diving and photography. They work together and can sometimes be complicated, especially when shooting at more than one location. I usually start with the diving part. Knowing exactly where I am going for the photo, I can easily calculate how much time and gas I am going to use to get to the location, and then recalculate a third so I know how much time I have to shoot the photo.

Then I plan the photo part, usually based on a sketch with lighting indicated. Having a sketch of the photo can be very helpful, as it tells me how many lights I am going to need in total and where to put them, both on location as well as when traveling with them. I will also know how much time I am going to need to place and retrieve them, and that adds to the total bottom time too, so I can have a relatively accurate time for actually clicking the shutter.

Plan The Shoot on CCR

It’s the diving part again after the shoot—whether to a second location or to the exit—and in the end, I will have a deco time and total runtime, so I can make sure we are not locked in the park and have somewhere to go for dinner.

Red is in, blue is out, shoot location is in yellow. Map created by Jeff Hancock, partially shown for planning purpose only.

Let’s start with a more straightforward example with one location on rebreather. My buddy Derek Dunlop and I planned a photoshoot at the fissure on Sweet Surprise line in Ginnie Springs. We wanted to scooter to the jump at 670 m/2200 ft on mainline in 20 minutes, drop DPV and sidemount bailout, then swim for another 200 m/656 ft to the shoot location in 20 minutes. The depth of the location is about 28 m/92 ft, which is also the maximum depth of this dive, and the average depth is about 24 m/79 ft before 6 m/20 ft deco, so it was well within our bailout radius, somewhat conservative considering the flow in this cave. (I have LP50 or 7.8L doubles + 1x sidemount 11L, Derek has 2x LP85 or 12L OC bailout. Assume we both have 11L x 2 x 200bar = 4400L OC bailout gas, SCR = 20L/min, ATA = 4, so we have 4400/20/4 = 55min to get back to the cavern. Swim speed = 10m/min, DPV speed = 40m/min, and it will take no more than 40 min in a real situation.)

We plan to shoot until the batteries of the lights die, which will take 40-45 minutes, plus 10-15 minutes to place and retrieve the lights, so it’s a 1 hour shoot at the location. That gives us a 150 minute bottom time plus 25-30 minutes of deco at 6m/20 ft (O2 setpoint: 1.2 bar), 3 hour total runtime.

Derek at the fissure. Most walls are very dark as it’s less traveled.

I usually use the GUE EDGE, i.e., GUE’s predive checklist, for planning, as it is a very good base to start with, no matter if you were trained with GUE or not, and it is very difficult to miss important information with it:

Goals: Photo at fissure on Sweet Surprise line. 

Unified Team: Derek diver # 1 and model, Ping diver # 2 and photographer.

Equipment match: Derek has 1 light on tripod, Ping has camera and 4 lights.

Exposure: Max depth 28m, average depth 20m; 20 min on DPV to jump, 20 min swim to shoot location, turn at 100 min. Total runtime 180 min.

Decompression: 30 minutes deco.

Gas: Sufficient OC bailout gas for each diver, 5.7L AL tank filled with oxygen to 200 bar.

Environment: Normal flow.

Filming at Jug Hole back in 2019.

Plan the Shoot—Open Circuit Edition

Here is another example of a short but multiple location photo shoot at Jug Hole in Ichetucknee Springs State Park, Florida, with my buddy cave diving instructor Joseph Seda as the model.

We planned to take a photo at the Diamond Sands restriction first, then an HDR panorama photo in the bedding plane right after the reaper sign, and a cavern shot if not too late.

The Diamond Sands restriction is only 80 m/262 ft on the mainline, but the flow in this cave is strong, and the bedding plane at the beginning is very low, so my swim speed would be about 8m/s, and it will take me 10 minutes to get to the first shoot location from the cavern. 

Average depth for this part is about 15 m/49 ft, maximum depth is 22 m/72 ft at the restriction. I have a very standard 20L/min SCR, so with 2 sidemount LP85 steel tanks (12L) I am going to use roughly 30 bar in each tank (5 bar/5 min with 12L doubles) before I can start playing with the lights.

Map created and authorized by Adam Hughes.

My tanks are filled with 32% to 260 bar (welcome to cave country!), so theoretically I have 260-30-30×2=170 bar to use for the first shot, with the depth of 22 m/72 ft, it gives me about 35 minutes before I have to turn the dive. 

Lighting is relatively simple here, just 1 light from the model’s back and 2 on the camera, so it will take only a couple of minutes to set up. Diamond Sands restriction is famous for the rolling sands in the flow when a diver passes, and that’s what we want in the photo, obviously from the exit side, and that makes my job easier, as Joseph will be the one placing the light in the back and coming back out of the restriction to pose. So he is diver #1, going in with two lights on tripod (one as backup and for shot two).

Going back to the bedding plane for the second shot only takes about 5 minutes, and getting out of the cave from there will take no more than 5 minutes too, which is about 15 bars in each tank. So usable gas for the second shot is 260-30-170-15-15×2=15 bar.

Diamond Sands restriction. Enlarge to see the rolling sands.

At 15 m/49 ft it gives me only 5 minutes, and I am supposed to get out of the cave with at least 50 bar in each tank, so we will have to shorten the first shot in order to get the second shot, which is a lot more complicated with 6 lights in total to light up the whole scene.

In the end, we got a shoot plan like this with GUE EDGE:

Goals:  Photos at Diamond Sands restriction and in bedding plane.

Unified team: Joseph diver # 1 and model + light monkey for shot 1, Ping diver # 2 and photographer + light monkey for shot 2.

Equipment match: Joseph has 2 lights on tripod, Ping has camera and 4 lights.

Exposure: Max depth 22 m/22 ft, average depth 18 m/59 ft; 10 min to location one, 20 min for shot 1; 5 min to location two, 30 min for shot two, 5 min to cavern.

Total runtime: 70 min.

Decompression: Minimum deco.

Gas: 260 bar to start, 170 bar to finish shot 1, 80 bar to finish shot 2.

Environment: Strong flow, restriction and sandy bottom at location one, very low bedding plane at location two.

*This calculation is relatively conservative, we have twice the amount of gas we need to get out of the cave at any point.

Plan for Safety

The purpose of planning the photo shoot is to make sure we don’t put ourselves in danger while being too focused on the camera in underwater caves. Open water photography is a lot less stringent in terms of planning; however, overhead environments require more precise ideas for how much time it takes to do the job, especially on open circuit. Good planning also makes the shoot more efficient by reducing unnecessary communication and setting up the scene as a team, which eventually leads to a safer dive. There is not one single photo worth a diver’s life, but there are countless caves that are worth diving with a camera

“There is not one single photo worth a diver’s life, but there are countless caves that are worth diving with a camera.”

Dive Deeper

InDEPTH: Cameras Kill Cavers… Again by Natalie Gibb

Here are some of Ping’s other stories:

InDEPTH: Close Calls: I Ripped My Drysuit a Kilometer Back In The Cave by Fan Ping

InDEPTH: Underwater Galaxy by Fan Ping


Fan Ping is a photographer and filmmaker based in Atlanta, Georgia, USA, and is dedicated to showing the beauty of the underwater world to people through his lens. He is specialized in combining artistic elements with nature and complex lighting skills in overhead environments, and this artistic style has brought him international acclaim, including awards from many major underwater photo/video competitions. You can follow his work on Facebook and Instagram: Be Water Imaging.


Be Water Imaging’s Underwater Cave Photography Course is a modular course that includes unique lighting skills and advanced photography techniques in underwater caverns and caves, and shoot planning is a very important part of the course. For more details please check my Be Water Imaging website, and contact Ping at: info@bewaterimaging.com.

Subscribe for free
Continue Reading

Thank You to Our Sponsors

Subscribe

Education, Conservation, and Exploration articles for the diving obsessed. Subscribe to our monthly blog and get our latest stories and content delivered to your inbox every Thursday.

Latest Features

Trending