fbpx
Connect with us

Education

A Quick Dive Into Ketones

Will going “keto” i.e. eating a low-carb, high-fat diet, help you lose weight, boost your endurance and most importantly protect you from CNS oxygen toxicity on those long, deep scooter dives? (We’re talking about you Karst Underwater Research) Former WKPP member, now a human performance research scientist, Dawn Kernagis summarizes the state of the science. Call it Keto Rising!

Published

on

by Dawn Kernagis, PhD

If you follow the current trends in health and fitness, the words; ‘ketone’, ‘ketogenic’, and ‘ketosis’ have recently become synonymous with weight loss, wellness, endurance, and (of course) controversy with respect to effectiveness and safety. Despite the popularity of these terms, there is still a bit of confusion surrounding each of them and, specific to the undersea community, what research has been conducted on ketones and diving. 

In this post, I will provide a brief, high-level overview of what ketosis is, what we know about potential diving-related applications of ketones, and next steps in diving-related ketosis research.

Keto 101

Ketosis refers to the presence of elevated ketone bodies (also known as ketones)  in the blood. Ketones (beta-hydroxybutyrate,  acetoacetate, and acetone) are produced by the liver from stored fat when a person either strictly fasts (typically a minimum of 24-48 hours) or undertakes a ‘ketogenic diet’ (very low carbohydrate, low-moderate protein, high fat). During ketosis, the body shifts from using glucose as a fuel, as a result of carbohydrate restriction, to burning ketone bodies.

In addition to fasting and the ketogenic diet (endogenous approaches), ketosis is also achievable exogenously by consuming substances such as ketone salts or ketone esters. Exogenous ketones increase blood ketone levels to varying degrees, with the latter raising blood ketone levels greater than 4mmol/liter  without depletion of carbohydrate stores, even in the presence of a carbohydrate-rich meal (Stubbs 2017). Induction of ketosis by eating or drinking ketones is rapid and acute; that is, the ketones will typically be metabolized within a maximum of four to eight hours. Given their short-lived effects, research is underway to understand if regular consumption of exogenous ketones has the same effect on our cells, tissues, and overall physiology as a sustained keto diet or fasting. 

Ketosis can be monitored using a variety of commercially available options, including sampling blood from the fingertip (similar to blood glucose testing) to measuring blood ketones with a handheld meter, using urine test trips, and analyzing exhaled breath. The ketogenic diet is actually one of the few diets that has a biomarker that tells you whether or not you are actually ‘on’ the diet: if your ketone levels are above the threshold, you are in the physiological state of ketosis, and vice versa! 

The number of studies assessing the benefits versus potential risks of sustained ketosis are increasing, and the medical and sports science communities are grasping an improved understanding about if, when, and how a ketogenic diet or exogenous ketone consumption could either benefit or negatively impact health and performance. While summarizing these studies would be the subject of an extensive series of blog posts, the study that piqued the diving community’s interest in ketones was focused on protecting rats from CNS oxygen toxicity seizures.

Bringing Ketones into Diving

The history of ketosis in the medical community is largely centered around epilepsy treatment. While there are historic records of the starvation ketosis being used as a treatment approach going back to 400 B.C., the first formal clinical trials using dietary ketosis to treat epilepsy were conducted in the 1920s. Dr. Russell Morse Wilder at the Mayo Clinic developed the ketogenic diet as a way to obtain the benefits of fasting through a nutritional approach that could be sustained long-term. In 1921, he conducted the first trial to assess the effect of a ketogenic diet on epilepsy patients.

Photo courtesy of Dawn Kernagis.

Flash forward to just a decade ago, when Dr. Dominic D’Agostino at University of South Florida became interested in the effects of ketosis on seizure latency and its potential as a mitigation strategy for CNS oxygen toxicity in divers. With previous experience conducting research in undersea medicine, Dr. D’Agostino developed a study to assess the effects of exogenous ketosis (induced by consumption of a novel ketone ester, known as an acetoacetate diester) on oxygen toxicity seizure latency in small animals (D’Agostino 2013). Rats were monitored for oxygen toxicity symptoms and brain activity using EEG during a 5 ATA chamber dive on 100% oxygen, and they were either dosed with ketone diester (which exogenously increases all three ketone bodies), butanediol (which only increases the ketone body beta-hydroxybutyrate),  or water (control) prior to their dive. 

Compared to water, the ketone diester induced a rapid and sustained elevation of all three ketone bodies and increased latency by a factor of five compared with water. Butanediol did not increase seizure latency even though it did effectively elevate blood beta-hydroxybutyrate. Demonstration of the increased oxygen toxicity seizure latency in rats in response to the ketone bodies acetoacetate and acetone, but not beta-hydroxybutyrate, was a significant finding. The study results also point to the different effects of the three different ketone bodies and the fact that not all exogenous ketones are the same when it comes to their potential applications. 

It is important to note that findings from animal studies can fail to translate effectively to humans due to differences in physiology and a variety of additional factors. A human study that assesses the effects of the ketone diester on CNS oxygen toxicity will be critical before potential translation to the diving community. However, controlled human studies of human oxygen toxicity are also rare and can be difficult to conduct. 

Given the low incidence of oxygen toxicity in divers, along with the ethical considerations of conducting oxygen toxicity interventional research in a non-medical, field-based setting, these human studies need to be conducted in a laboratory environment with the appropriate safety considerations, statistically-driven study design, and outcome measurements. As a starting point, and at the time of this article, a double-blinded, lab-based study of oxygen toxicity in humans on a ketogenic diet compared to normal diet was underway at Duke University.

Future Research

When it comes to ketosis, there is still a significant amount of research that needs to be conducted before we know whether it could be beneficial and, most importantly, reliably safe in divers in a variety of conditions and exposures. In addition to the Duke oxygen toxicity study in humans, there are laboratory studies currently underway to evaluate the effect of ketone esters on cold water performance (e.g., core temperature, hand temperature, dexterity, and diver performance), hypoxia mitigation, and a variety of physical performance parameters. Beyond diving-specific applications, long-range studies that assess the health effects of sustained ketosis are underway and will provide a better understanding as to how the ketogenic diet and repetitive dosing of exogenous ketones impact long-term health and performance.

Additional Resources:

The SpruceEats.com: The 9 Best Keto Meal Delivery Services of 2020 


Dr. Dawn Kernagis is a research scientist in the area of human performance optimization and risk mitigation for operators in extreme environments, such as those working undersea, at altitude, and in space. Her team’s current research efforts are funded through several DoD agencies and the NASA Translational Institute for Space Health.

Dawn came to IHMC from Duke University Medical Center, where she was an American Heart Association Postdoctoral Fellow and funded by the Office of Naval Research (ONR) to identify mechanisms and potential therapeutic targets for acute brain injury. She completed her PhD at Duke University as ONR Undersea Medicine’s first Predoctoral Award recipient. 

Dawn is a technical diver and has managed numerous underwater exploration, research, and conservation projects around the world since 1993, including the deep underwater exploration of Wakulla Springs and surrounding caves. Dawn was inducted into the Women Divers Hall of Fame in 2016, and is a Fellow of The Explorers Club. In 2018, she received the Undersea and Hyperbaric Medical Society’s Young Scientist Award. She loves traveling, playing piano, and spending as much time outdoors and on the water as possible.

Community

My Deep Dive Into The Dunning-Kruger Effect

Tech diver Brendan Lund shares his personal diving journey from summitting Mount Stupid and descending into the depths of Despair on trimix, before finally beginning his ascent on the Slope of Enlightenment. No Kool-Aid was involved in the making of this story.

Published

on

By

by Brendan Lund
Images courtesy of Brendan Lund

Lund diving in Socorro, Mexico,

I started diving in 1996 as a poor student in South Africa. I absolutely fell in love with diving, and haven’t stopped since. After moving to the UK in 2001, I finally started earning money and was able to dive more frequently. At this time, the Red Sea was starting to boom, and I was able to book a full week of diving—including flight and accommodation—for as little as 350 GBP! Many trips later, I became interested in tech diving, as it was the happening thing, and in 2004 I decided to begin my tech journey with a leading agency. This also signals the start of my journey with the Dunning-Kruger Effect!

Grokking Dunning-Kruger 

I first saw the Dunning-Kruger effect graph a year or so ago and couldn’t stop thinking about its relationship to my diving. 

What is the Dunning-Kruger Effect? Here’s what Wikipedia has to say:

In the field of psychology, the Dunning–Kruger effect is a cognitive bias in which people with low ability at a task overestimate their ability. It is related to the cognitive bias of illusory superiority and comes from the inability of people to recognise their lack of ability.

As described by social psychologists David Dunning and Justin Kruger, the bias results from an internal illusion in people of low ability and from an external misperception in people of high ability; that is, ‘the miscalibration of the incompetent stems from an error about the self, whereas the miscalibration of the highly competent stems from an error about others’.

The graph below simplifies this concept—again, this is taken from the internet, but the wording pretty much sums up what I have been feeling throughout  this journey:

The less knowledge you have, the more confident you feel. The more you learn, the less confident you feel. 

The View from Mount Stupid

In 2005, I progressed from an advanced nitrox diver to a fully-certified advanced trimix diver. My instructor was a well-known deep diver at the time, and I was super impressed with the courses. I was at the point of Mount Stupid on the graph. These courses were not a pass/fail style of course; you just had to prove you could complete the skill once, and bam! You’re qualified! 

“Wow, I’m the man! I’ve passed my Advanced Trimix Course and dived to 100m.”

I dug out the photo below from a box in the shed. We had someone take an underwater photo of us celebrating our successful completion of our deco procedure course. As you may notice, trim was not a requirement at the time (I’m now hiding my face with embarrassment)! Apologies to my buddies in the photo; it was a while ago, and the instructor is the only one in reasonable trim!

Class celebrating the completion of a deco procedures course.

To say I was chuffed is an understatement! I immediately went tech diving as much as possible. In 2008, I decided to travel the world for a year—diving of course. I met many amazing people and dived everywhere; I also became an instructor with a well-known recreational agency. I was at the top of my game (or so I thought), although I still don’t think I had any trim! I mean, who needs trim, right?

On one of my adventures, I met a guy who was really interested in checking out a new agency that he had heard of. This would be the first time that I heard about Global Underwater Explorers (GUE). After much research and reading internet forums for GUE in 2000, I believe the Dunning-Kruger realisation phase of my journey began: I thought, “There is definitely a lot more to this!”

The Slope of Despair

I’m not going to lie; the more I looked into GUE, the more nervous I got, and the more I slid down the slope of despair. It took me a good six years to build up the courage to sign up for a Fundamentals class, and I showed up on that day feeling very confident in my brand new drysuit and my horseshoe wing. Wow, did I learn that I was way out of my depth! I was in trouble. It was so much harder than I had ever imagined. I don’t think it was so much the course that was hard, but that it was hard for me to overcome my ego and overconfidence.



I received a provisional “Tech Pass” [i.e., I qualified to take GUE’s Tech 1 or Cave 1], and it felt like I had failed! I was at the bottom of the Dunning-Kruger slope of despair.  Was I ever going to get it? I questioned whether I should go back to get my pass, and I have to thank my buddies Nikky and Darren for encouraging me to do so. After lots of practice and some gear tweaks, I felt like I smashed it, and achieved my Tech Pass! Was this the beginning of the slope of enlightenment? Things were starting to make sense!

The Slope of Enlightenment

I have now completed two more GUE classes—DPV1 and Cave 1—and am signed up for Tech 1 next year. The future looks bright! I dive as often as I can with like-minded divers, and I realize that there is always more to learn and areas where I can improve. I am hopeful that I am now on the Slope of Enlightenment; it certainly feels that way.

I highly recommend GUE to any divers that would like to work on themselves. It has definitely helped me on my diving journey, and I now look forward to many more years of diving and learning. I can’t wait to get involved in more projects and extend my skill set.

Additional Resources

It’s Never Too Late To Tackle Fundamentals


Brendan is an events manager based in London and (currently) dives mainly around the southwest coast of England. He started diving in 1996 in South Africa and has dived all around the world. He found a passion for cave diving a few years agohis favourite place to do this is Tulum, Mexicobut still loves wreck diving. Brendan is looking forward to the next challenge, with project work planned with Project Baseline, and Tech 1 is in his diary for next year in Croatia, since Covid-19 postponed it this year.

Continue Reading

Subscribe

Submerge yourself in our content by signing up for our monthly newsletters. Stay up to date and on top of your diving.

Thank You to Our Sponsors

Education