Connect with us

Education

Part Three: Bubble-wise, pound-foolish. Are deep stops dangerous?

In part three, of this four-part series on the history and development of GUE’s decompression protocols, GUE founder and president, Jarrod Jablonski begins by asking the question, “Are Deep Stops Dangerous?” He then goes on to discuss the early rise and experience with bubble models VPM, VPM-B and RGBM in the late 1990s, and the subsequent impact on the tech community, when the U.S. Navy Experimental Diving Unit (NEDU) released their deep stop study in July 2011. Their unambiguous conclusions? The redistribution of decompression stop time from shallow to deep stops increases incidence of decompression sickness in air decompression dives! Additional work followed calling deep stops into question. Jablonski assess what these all mean for decompression procedures, and presents GUE’s current approach. Feel free to DIVE IN and share your thoughts.

Published

on

by Jarrod Jablonski

Header photo from the GUE Archives. WKPP dives in Wakulla.

Have you read Part One and Part Two?

Through the 1990s and early 2000s, technical diving was becoming progressively more popular, and the exploits of explorers were being reported around the world. There were numerous reports of greatly adjusted decompression profiles, many of them attributed to the benefit of deep stops. During this period, any mention of dissolved gas algorithms was tantamount to talking about a flat earth. It seemed self-evident to so many people that controlling bubbles just made sense. How could all of those technical divers be talking about adjusting their decompression profiles if there wasn’t something to this deep stop/bubble control concept? Were they safely reducing decompression time, just getting lucky, or perhaps exaggerating their success, whether intentionally or not? 

Questions like this encouraged decompression enthusiasts Erik Baker and Erik Maiken to work with researchers like David Yount to refine Yount’s Varying Permeability Model (VPM), extending the early concepts to support bubble management during repetitive, mixed-gas decompression diving. During one planning session, Baker demonstrated to me that VPM mirrored the type of shortened decompression that was eerily similar to the schedules our team had evolved organically. Over time, the early enthusiasm for this new model gave way to more realistic appraisals. Short dives that formed the base of “typical” tech diving–around 75 m/250 ft for about 30 minutes–were resulting in very short VPM decompressions. In fact, the output looked troublesome, causing Global Underwater Explorers (GUE) to delay implementation of VPM for more than a year. When GUE did include VPM, guidance was codified in GUE’s Standards and Procedures document and required that all profiles continue to refer to the original Buhlmann as the reference standard. That requirement remains to this day.

Problems with VPM became more frequent, and decompression sickness (DCS) was being reported somewhat regularly, even among die-hard enthusiasts. Ironically, a calculation error relating to Boyle’s law was discovered, and VPM was adjusted and re-released as VPM-B; although most favored calling it VPM since it was intended as a replacement. VPM was included in a variety of decompression programs and competed with Bruce Wienke’s Reduced Gradient Bubble Model (RGBM). Over time, enthusiasm for the new bubble models eased somewhat with many divers picking and choosing depending upon a given dive. People still tended to believe in the idea of bubble models, albeit with a more cautious view of the application. 

WKPP dives in Wakulla. Photo from the GUE Archives.

Extrapolating theoretical bubble dynamics into real-world application is complex but also deeply intriguing. It also encourages divers to ask if such a paradigm shift might illuminate a deeper truth about the mechanisms at work. Physiologist Brian Hills (1934–2006) became deeply intrigued by the idea, being at least partly inspired by observing pearl divers’ successful decompression in one-third the time presented in commonly accepted U.S. Navy tables. This reduction in time was similar to the claims of some technical divers who also believed the result was influenced by their control of developing bubbles. Both the pearl and tech diver “results” require a great deal of context, which we will save for a more detailed review. These results may well foreground both a flawed process and a unique insight.  

Hills commented that: 

“Haldane’s calculation method did not say the same thing as the equations he used to formulate diving tables. Haldane and subsequent Naval tables were based upon the axiom that the bends-free diver must be bubble-free. This is demonstrated qualitatively by the diver who develops a case of the bends during ascent. Now knowing that he has bubbles, you would move him deeper as a treatment. On the other hand, if those bubbles had not become manifest as the bends, you would continue to take him shallower, assuming that he was bubble-free.”

Given the complexity, the early difficulty of modeling bubbles was probably to be expected. There are numerous variables involved in developing an effective bubble model. We might speak about micro bubbles that grow from seeds, and where we strive to limit a bubble’s critical radius and the critical volume of allowable bubbles. In making these assessments, modelers must work from lab experiments which strive to determine and then extrapolate what actually happens in the body. Even if they manage to get all the particulars correct, they still remain unclear about how a given bubble may or may not impact a diver. For example, where does the bubble go, and how does this create symptoms? Are the impacts from bubbles mostly or exclusively related to where they come to rest, i.e., when they stop and block blood flow and/or impinge upon a nerve and cause pain? Or, do bubbles cause problems by their presence, signaling the body’s immune response and resulting in collateral symptoms? Even a perfect model of bubble development might fail to develop consistent and useful decompression tables.

The uncertainty revolving around bubble models was nothing new in the technical diving world. Recall that many divers had been regularly modifying their own profiles for years with little certainty. Most divers seemed to believe bubble models had value, albeit more carefully structured than early assessments might have prompted. 

Planning World Record Dives

The shot that rang across the technical diving community

In July 2011, the Navy Experimental Diving Unit (NEDU) released a deep stop study with the unambiguous conclusion that “REDISTRIBUTION OF DECOMPRESSION STOP TIME FROM SHALLOW TO DEEP STOPS INCREASES INCIDENCE OF DECOMPRESSION SICKNESS IN AIR DECOMPRESSION DIVES.” 

There it was, in black and white for all to read. Deep stops not only did not help but they also actually INCREASED the risk of decompression problems. Lest one imagine the issue settled, the protests began almost immediately. The NEDU study did not model the type of decompression used by technical divers, most notably by forgoing oxygen-rich mixes as part of the decompression. Others complained about the use of air, an abomination in some tech circles, and enough for some divers to immediately discount the study. Still others disliked the ascent profile, which placed 44 minutes of decompression between 21 m/70 ft and 15 m/50 ft alone. Some argued that even a conservative use of gradient factors with deep stops would only result in 13 minutes over the same range, leading some to argue that such on-gassing would naturally outstrip any value to deep stops that are excessively long.

Jarrod Jablonski and George Irvine at the last stop in a Wakulla Springs habitat. Photo from the GUE archives.

The researchers conducting the NEDU study are exceptionally bright, capable, and well-informed experts. They had excellent reasons for the choices they made, and these have been well defended in various media, perhaps most eloquently in online discussion forums by Dr. David Doolette and Dr. Simon Mitchell , two giants in the fields of hyperbaric research and treatment, respectively. Both men are among the world’s foremost experts in their respective fields, and anyone of reasonable sense would carefully consider an opinion that challenges their conclusions. 

My intent here is not to argue for or against the NEDU study, or even deep stops in general. I will leave that discussion for later, and the final determination belongs to those for whom it is relevant. For now, I hope to summarize the particulars and leave the reader to review the substantial body of information available. What we can say now is that it is unlikely anyone study could convince those that perceive years of success with a given approach. For some, the NEDU study was missing many critical details. One can certainly argue that deep stop efficacy should be independent of these details, but technical divers care less about that aspect than they care more about using deep stops in conjunction with their normal practices. The NEDU study argues, many would say compellingly, that deep stops are not beneficial. We know that because a larger share of divers in the study developed problems while using deep stops than not using these stops. In fact, the research is more compelling given the number and severity of DCS cases. Moreover, there are additional studies that support the NEDU conclusion, while there have not been any studies that support the value of deep stops. 

The NEDU study appears to be empirically rational and logistically consistent, though deeply unsatisfying, at least for some. With so many differences between the NEDU study and typical technical profiles, resistance was to be expected. Change can be unsettling, and no doubt some of the resistance can be explained by this discomfort, something known as cognitive dissonance among those that like to label such things. Even a casual review of the discussion forums illustrates the emotional attachment we have to long-standing ideas: Some are gleeful about the news, enjoying the chance to deride those that followed this path, which is an understandable backlash to the uber-confidence of some deep stop advocates. Others are angry, blaming others for duping them, apparently absent a sense of personal responsibility. Between the growing anti-deep movement and the declining pro-deep camps resides a mostly cautious base, with some patient experts helping to channel the discussions. Despite a few unhelpful personal insults, we can be broadly impressed with the ways in which technical divers are processing this new information. Ideally, we would learn from the largely unsubstantiated rush into deep stops enacting a measured exit strategy, especially while managing a few other pesky details relating to the use of deep stops. For example, how should a person convinced by the science against deep stops treat fellow divers? How about the dive buddy relating anxiety over the change? What about those experiencing DCS symptoms in deeper water? The onset of these symptoms can include pain, numbness, and neurological problems. There is a known risk in deeper and longer dives, and the frequency is enough to encourage a standard requiring that surface-supplied dives in excess of 91 m/300 ft be conducted as saturation-only in the U.S. Navy, among others. [Ed. note: U.S.Coast Guard regulations require that commercial diving jobs deeper than 91m/300 ft be conducted using saturation diving. Meanwhile, many clients such as BP and Shell Global mandate saturation diving below as little 37m/120 ft]. 

George Irvine before a Wakulla Springs exploration dive. Photo from the GUE archives.

It is problematic to suggest that divers experiencing DCS symptoms at depth ascend. Meanwhile, some of these divers have established protocols, including some version of deep stops, that they believe help manage the problems they are confronting. Put simply, what do you say while in the water and managing a diver that reports decompression problems in deep water during the ascent? Do you tell them to have faith in the balance of currently developing research? More broadly, how should individuals, teams, and organizations manage the variety of competing strategies within their community? In considering this problem, we find unexpected complexity, even reaching beyond the relative simplicity of the deep stop vs. no-deep-stop debate.

In this video, GUE President Jarrod Jablonski discusses historical and practical decompression aspects with GUE Explorers Mario Arena and Richard Lundgren.

Are we in a post-deep-stop world?

During the late 1990s and early 2000s, deep stops experienced great popularity, but almost as quickly as they appeared, they become a black sheep in many circles. That a community can so quickly embrace and then reject an idea is, in many ways, a positive feature of rational humans. True science, when done well, represents the best of this ideal because it takes almost nothing for certain. One develops a hypothesis, tests rigorously, and informs upon that hypothesis. Other researchers hopefully pursue a similar effort, and, over time, we gain confidence in a given idea or we do not. Even longstanding ideas are not technically settled, even though the overwhelming weight of evidence supports that hypothesis. 

When considering details regarding decompression or deep stops or any of the variety of the semi-common modifications in the technical diving community, we should maintain some balance in our view. While the rush into deep stops exemplifies the desire of the technical diving community to push past historical barriers, the enthusiasm was likely too hasty, given the lack of evidence and clarity in execution. This kind of initiative, for better or for worse, defines our species. Now some are pushing to accelerate ascents from depth. While this may well be the correct approach, we should manage the transition with a bit more foresight than was previously demonstrated. There are still many unanswered questions in the search to better understand decompression problems.

For the moment, it can be said that deep stops likely do not represent a clear value in accelerating one’s decompression and that they may actually present problems. It is obvious that the deep stop profiles, such as the one tested at NEDU, are not useful and can be dangerous. There are many compelling arguments that these results are directly correlated to the lack of utility in deep stops themselves, and other studies support this view. These individuals are sometimes frustrated by what they perceive as an outdated and unsupported view of evolving decompression science. At the same time, a research study that tests deep stops in a way that appears to be totally removed from their practical use is bound to elicit suspicion. Regardless of our personal conviction for or against an idea like deep stops, we should take the experience of our peers into consideration.

This backdrop of uncertainty requires some accommodation on two primary fronts. First, those engaged in technical dives must weigh the available evidence and make an informed decision about the best way forward. Second, one should respect the experience and choices of those with whom they choose to dive. There are no certainties in decompression, and the divers actually in the water doing the decompression maintain the ultimate responsibility for an associated plan. For GUE, and others, these aspects require careful balancing. 

GUE was founded and is managed by leading explorers, regularly conducting aggressive diving projects where lengthy exposure can become a notable liability. Changing weather, thermal problems, or other developments can force a diver to get out of the water as quickly as possible. Meanwhile, GUE is a training organization and maintains the need to establish a conservative approach in support of new technical divers. These new divers must determine, through experience, their individual susceptibility to decompression sickness. All divers should begin this process slowly, adjusting toward more aggressive profiles only if it makes sense based upon need and experience. However, in most cases, it will not make sense for divers to manipulate their decompression to be more aggressive. 

Jarrod Jablonski after a dive in Wakulla Springs during the 1990s. Photo from the GUE archives.

Evaluation of what constitutes an aggressive profile is a big part of what gradient factor methodology hoped to illuminate. To what extent that goal was realized remains an open question, but the use of gradient factors remains extremely common for both deep-stop and anti-deep-stop groups. Those favoring a move away from deep stops favor more aggressive ascents with higher gradients. Meanwhile, some divers resist rapid adjustment to what they perceive has been working. GUE policies regarding gradient factor strive to balance these factors while leaving the ultimate decision in the hands of experienced teams. It is very reasonable to act with consideration to prevailing research but we should also remember that most of the details remain unclear, leaving each diver with a burden to determine the best course of action. I would like to assert that these choices look more significant than they are in most cases, as I will detail in later sections. For now, we might ask if using low gradients can be dangerous , which is related but somewhat different from the removal of deep stops.

A deep stop profile may or may not be less efficient in terms of ascent time, but should its inclusion be strongly resisted? How about during an ascent where divers are experiencing or have experienced problems? If you feel greatly disadvantaged in terms of efficiency, then I would like to create some context. A typical dive to 45m/150 ft for 30 minutes while using a gradient of 20/85 produces a total of two minutes more decompression as compared to a 60/85 profile. Of course, the “problem” with low gradients becomes much more relevant with deeper depths and/or longer bottom times. In this case, adding deeper stops might result in a growing disparity between the total decompression times though this largely depends upon the model and safety factors utilized. Yet, these longer profiles are not conducted by new tech divers or students, and modifications to long and deep profiles ultimately rest with experienced divers making these choices for themselves. 

Jarrod Jablonski and Bill Main in 1992. Photo from the GUE archives.

As an organization founded by explorers and with wide-ranging expeditions conducted annually, GUE has always provided notable latitude to experienced divers but has also guided new divers toward conservative decompression exposure. Our experience over 30+ years demonstrates that a diversity of decompression profiles can be “successful.” Yet, we should always push to better define what success looks like. That question,  along with some of the more aggressive experiments in our community, highlight an interesting, if not blasphemous, possibility: Are we making progress toward understanding the underlying issues guiding decompression, or are we merely accumulating data? If we are making progress, do we appreciate the nuances enough to properly contextualize the outcomes? 

It is clear that advances in decompression knowledge have been significant, and that most individuals can dive with relative assurance that they will not become injured. I do not intend to suggest otherwise. However, I would like to ask if we are certain enough that we should push others toward our own beliefs. Are the details too vague for there to be the best solution that works for everyone? I hope you will join us for the final, part four of our series where we explore some unique, often under-discussed aspects of decompression development. 

Note: I hope the reader is able to appreciate my intent in this writing. I am not pushing any agenda, save the idea that open dialogue and respect for the experiences and reports of others is an important part of evolving practices. GUE is strongly committed to standard practices, although an often unappreciated aspect of this commitment is the understanding that some adjustment is natural. The idea is not to create a rigid, unthinking policy but a set of common tools, useful in large part because of their standardization within a community. Those standards can and do evolve, although they should not be changed carelessly unless a meaningful value is established. 

Tell us what you think. Should the industry immediately abandon all forms of deep stops? How hard should we push resistant dive buddies? How should we manage those experiencing problems during ascent but finding resolution with the inclusion of deep stops? We welcome your thoughts and want to hear about your experiences. 

Subscribe for free

Dive Deeper

1. Blatteau JE, Hugon M, Gardette B. Deeps stops during decompression from 50 to 100 msw didn’t reduce bubble formation in man. In: Bennett PB, Wienke BR, Mitchell SJ, editors. Decompression and the deep stop. Undersea and Hyperbaric Medical Society Workshop; 2008 Jun 24-25; Salt Lake City (UT). Durham (NC): Undersea and Hyperbaric Medical Society; 2009. p. 195-206.

2. Spisni E, Marabotti C, De FL, Valerii MC, Cavazza E, Brambilla S et al. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco. Diving Hyperb Med 2017;47:9-16.

3. Gennser M. Use of bubble detection to develop trimix tables for Swedish mine-clearance divers and evaluating trimix decompressions. Presented at: Ultrasound 2015 – International meeting on ultrasound for diving research; 2015 Aug 25-26; Karlskrona (Sweden).

4. Doolette DJ, Gerth WA, Gault KA. Redistribution of decompression stop time from shallow to deep stops increases incidence of decompression sickness in air decompression dives. Technical Report. Panama City (FL): Navy Experimental Diving Unit; 2011 Jul. 53 p. Report No.: NEDU TR 11-06.

5. Fraedrich D. Validation of algorithms used in commercial off-the-shelf dive computers. Diving Hyperb Med 2018;48:252-8.

Read the other articles in the series:

Part III

Part IIII


Jarrod is an avid explorer, researcher, author, and instructor who teaches and dives in oceans and caves around the world. Trained as a geologist, Jarrod is the founder and president of GUE and CEO of Halcyon and Extreme Exposure while remaining active in conservation, exploration, and filming projects worldwide. His explorations regularly place him in the most remote locations in the world, including numerous world record cave dives with total immersions near 30 hours. Jarrod is also an author with dozens of publications, including three books.

1 Comment

1 Comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Community

Risk-Takers, Thrill-Seekers, Sensation-Seekers, and … You?

It’s likely that many in our community no longer think of tech diving as a risky activity, or perhaps even appreciate how important taking risks may be to one’s personal health—let alone that of our species. Fortunately, InDEPTH’s copy editing manager Pat Jablonski dived deep into the origins, meaning, and benefits of regularly taking risks, and even offers a thrill-seeking quiz for your edgy edification. What have you got to lose?

Published

on

By

by Pat Jablonski. Title photo courtesy of Katelyn Compton Escott.

“Life without risk is not worth living.” – Charles Lindbergh

What defines a risk? What is involved in taking a risk?

Difficult questions to answer, because something that feels risky to one person might be yawn-worthy to another. Risk taking, unscientifically, is something you do that gets your blood up, raises your heartbeat, awakens your senses, and makes you hyper-aware of your surroundings.

Surely we can agree that the Covid pandemic has added an unexpected level of risk to everyday life. Add poor drivers, mass shootings, contentious politics, global climate change, and many are left believing that meeting each day is risky enough. But that’s not true for people who identify as risk-takers or thrill-seekers.

“Everyone has a ‘risk muscle’. You keep in shape by trying new things. If you don’t, it atrophies. Make a point of using it once a day.” – Roger Von Tech

There are many activities that go to the trouble of defining the level of risk involved with a specific activity, and while that’s not the purpose of this article, you should know that scuba diving ranks fairly high on the risky behavior scale–higher than skydiving and rappelling. And, cave/wreck diving or freediving isn’t on any risk scale we could locate. We can assume it’s up there—near or at the top.

Fock A. Analysis of recreational closed-circuit rebreather deaths 1998–2010 Diving and Hyperbaric Medicine. 2013 Volume 43, No. 2. With the caveat that they are “best guess numbers,” Fock concluded that rebreather diving is likely 5-10x as risky as open circuit scuba diving, accounting for about 4-5 deaths per 100,000 dives, compared to about 0.4 to 0.5 deaths per 100k dives for open circuit scuba. This makes rebreather diving more risky than skydiving at .99/100k, but far less risky than base-jumping at 43 deaths/100k. The current belief is that rebreather diving has gotten safer.

Divers are a fairly small niche group for many reasons. One of them could involve the degree of danger associated with the sport. Answer this: Do dry land people ever ask you why you would want to take such a chance with your life in order to go where you weren’t meant to go? 

It’s a reasonable question, albeit a hard one to answer.

Photo courtesy of Glen Kwan

“A life without risk is a life unlived, my friend.” – Big Time Rush

Kevin Costner’s Waterworld aside, humans have (yet) to be born with gills or webbed toes. Still, there you are. You’ve spent unmentionable amounts of money. You’ve carved out a whole day, or maybe weeks, away from your to-do list. You’re suited up and look like an alien. You’re on a quest to explore the aquatic world where you’re able to breathe only with a cumbersome apparatus. You’re planning to explore inner space! You’re going to delve into that amazing realm that’s off limits to most people. 

You may look all matter-of-fact, cool as a cucumber, another day at the office, but it’s a thrill, isn’t it? Inside, you’re a kid with butterflies in your tummy who’s getting away with something big and exciting. Okay, it’s true–you and your team are highly trained, your equipment is top-notch, every box is checked off, and you are behaving responsibly. However, you’d have to be in a coma to not realize that what you’re about to do is taking a risk. Who doesn’t know that people have died doing what you’re doing? Answer honestly: How much more exhilarating is the experience when you know it’s not a walk in the park? Our own Michael Menduno admitted that “the feeling of being more alive lasted for days” after a dive.

So, you’re a diver. Does that mean you’re a risk taker? A thrill seeker? A sensation seeker?

Let’s dive into that subject, first by taking a little quiz, shall we? 

Photo courtesy of SJ Alice Bennett

From A Death Wish to Life Is Precious

In the past, too many mental health professionals treated risky behavior like a disease in need of a cure, focusing on the negative side of risk, even using government funding to address risky behavior and stamp it out. 

Before that, Sigmund Freud might have even believed that thrill seekers had a death wish; in fact, it’s what was believed for many years. 

Modern-day science doesn’t support either theory.

“Only those who will risk going too far can possibly find out how far one can go.” – TS Elliot

For our purposes, we’re focusing on the positive aspects of taking chances, pushing boundaries, and seeking experiences that make life feel . . . more alive. Richer. Fuller. We want to examine what goes into the psyche of a person (like you?) who is enthusiastically willing to engage in an activity already identified as dangerous, possibly even by the people who are engaging in it, and hear what some experts on the subject have to say about such people.

Photo courtesy of Jen MacKinnon

The University of Michigan’s Daniel Kruger proposes that taking chances is a fundamental part of human nature going all the way back to our ancient ancestors—prehistoric humans who had to constantly put their safety on the line in their fight for survival. Think fighting off a wooly mammoth with a stick. Kruger believes we have consequently retained many of those same instincts today, and he believes that it’s a good thing. 

This writer, who is related to a major risk-taker, has always believed that heart-quickening experiences are essential for a well-lived life. I’m convinced and have long proposed that those pulse-pounding moments are often accompanied by a deepened understanding of and appreciation for one’s life—perhaps all life. And I’m happy to report that current science confirms that belief.

“If you are not willing to risk the unusual, you will have to settle for the ordinary.” – Jim Rohn

Dr. Kruger is one of the scientists who proposes that taking risks means “seeking that moment when life feels most precious.

This should not be news for you diving adventurers out there.

Nature vs. Nurture: Born That Way or Learned To Love Adventure

Another scientist, Marvin Zuckerberg, affirms the theory that risk taking is in our DNA. “Certain people have high sensation-seeking personalities that demand challenges and seek out environments that most people’s brains are geared to avoid.” I’ll go out on a limb and say that underwater caves or shipwrecks would qualify as environments most would avoid.

Dr. Cynthia Thompson, the researcher behind a 2014 study from the University of British Columbia, was early to look at the genetic factors that might make a person predisposed to participating in extreme sports, ones that are typically defined as activities where death is a real possibility. The results of her study revealed that risk-takers shared a similar genetic constitution, a genetic variant that influences how powerful feelings are during intense situations.

Photo courtesy of Steve Boisvert

Most scientists agree that personality is a complicated mix of genetic and environmental influences. The “nature vs. nurture” dilemma is alive and well. Dr. Thompson concluded that people who engaged in so-called high-risk sports were not impulsive at all, not reckless either. Instead, “they’re highly skilled masters of their discipline who take a very thoughtful approach to their sports.”

A study conducted in 2019 examined human boundaries, people who pushed them to their limits and beyond, and what made those people tick. Zuckerman labeled such people “sensation seekers” and defined them as “people who chase novel, complex, and intense sensations, who love experience for its own sake, and who may take risks to pursue those experiences.” Is that you?

“History is full of risk-takers. In fact, you could say that risk-takers are the ones who get to make history.” – Daniel Kruger

Other experts posit an alternate theory—one proposing that modern society in the age of seatbelts, guardrails, child-proof caps, safety precautions, laws, rules, and regulations has dulled the sense of survival. In other words, life has flattened out and no longer feels exciting, or risky. So, is one of the reasons we seek excitement because of boredom? 

Maslow’s Theory of Self-actualization

I don’t honestly know who was the first proponent of risk-taking being a positive thing, but the work of Abraham Maslow, the founder of humanistic psychology, was one of the first. Maslow became one of the most influential psychologists of the twentieth century, and he developed a theory of human motivation that advocates for “peak experiences.” Peak experiences are not attained without risk.

“One can choose to go back toward safety or forward toward growth. Growth must be chosen again and again; fear must be overcome again and again” – A Maslow

He proposed that, in addition to meeting basic needs, all humans from birth seek fulfillment in terms of what he called self-actualization—finding their purpose/being authentic. Self-actualization involves peak experiences—those life-altering moments that take us outside ourselves, make us feel one with nature, and allow us to experience a sense of wonder and awe. Maslow also believed that those who were able to have such peak experiences tended to seek them out rather than waiting for the next random occurrence. Hence the anticipation of the next dive?

“Do one thing every day that scares you.” – Anonymous

Photo courtesy of Adam Haydock

Out of Your Comfort Zone Into A World of Wonder

Psychologist Eric Brymer from Queenstown University of Technology in Brisbane, Australia, has spent years studying extreme athletes and has this to say: “They’re actually extremely well-prepared, careful, intelligent, and thoughtful athletes with high levels of self-awareness and a deep knowledge of the environment and of the activity.”

Recent research backs up what some extreme sports athletes have been saying for years, even if only to themselves.

“What participants get from extreme sports is deeply transformational, a sense of connecting with a deep sense of self and being authentic, a powerful relationship with the natural world, a sense of freedom,” says Brymer. “They get a strong sense of living life to its fullest as if touching their full potential.”

Brymer’s comments mirror what Maslow, the founder of humanistic psychology, said back in the 1940s.

We’re not advocating for taking stupid chances (such as diving without proper training, or necessary precautions) and we don’t believe anyone reading this article does that. We simply intended to focus on the scientific evidence that supports adventurers—people who get a thrill from an activity that offers—as a bonus; a chance to feel awakened from the mundane and thrust into a world of wonder. 

Risk-takers and sensation- or thrill-seekers chase unique experiences. Often, those experiences bring awareness of important issues or increase essential knowledge about the planet we share. Many people overanalyze and dither when faced with an unfamiliar situation; they shy away from unsettling circumstances. Risk-takers face the unknown and trust themselves to prevail. Learning to scuba dive, for example, pushes people out of their comfort zone, takes them into a realm foreign and mysterious. Diving forces divers to pay complete attention to a task, to focus with laser-like precision in order to conquer misgivings, and to attain a skill that few others have. Confidence comes with accomplishment. Leadership emerges. Fear is overcome. 

Sensation-seekers see potential stressors as challenges to be met rather than threats that might defeat them. With action, resilience develops. High sensation-seekers report lower perceived stress, more positive emotions, and greater life satisfaction. Engaging in extreme activities brings them peace. 

What does it bring you?

Dive Deeper

Bandolier: Risk of dying and sporting activities

National Geographic: What Makes Risk Takers Tempt Fate? Recent research suggests that genetic, environmental, and personal factors can make people take on risky—even potentially fatal—challenges.

Healthday: Taking Risks By Chris Woolston HealthDay Reporter


Pat Jablonski heads up the copy edit team for InDEPTH. She is a blogger, a writer of stories, a retired tutor, English writing teacher, and therapist. She’s a friend, a wife, a proud mother and grandmother. She is also a native of Florida, having spent most of her life in Palm Beach County. She has a B.A. in English from FAU in Boca Raton and an M.S.W. from Barry University in Miami. She learned to swim in the ocean, a place she thinks of as home, but she doesn’t dive.

Continue Reading

Thank You to Our Sponsors

Subscribe

Education, Conservation, and Exploration articles for the diving obsessed. Subscribe to our monthly blog and get our latest stories and content delivered to your inbox every Thursday.

Latest Features

Trending