Connect with us

Diving Safety

Why Do Divers Run Out Of Gas?

Not surprising, the answer is more complicated than simply, they neglected to look at their gauges. Here Aussie diving medical researcher and former editor of DAN’s Annual Diving Report, Peter Buzzacott dives into several deep datasets including DAN’s Incident Reporting System (DIRS) and nearly four decades of cave diving incident data, to tease out some insights on gas emergencies and get a handle on the risks. Don’t stop those S-drills!

Published

on

by Peter Buzzacott

See companion story for a guestimate of the risk: What is the Risk of Running Out of Gas?

Next year it will be 30 years since I first learned to dive. At the time, I had no idea that diving would occupy such a large part of my life. I distinctly remember kneeling on the sandy bottom end of the Great Barrier Reef, sharing a regulator with my buddy, and seeing sunlight rippling down through crystal clear water. On one of these “confined water” dives we had to swim horizontally for 10 m/30 ft holding our regulators out of our mouths and blowing a steady stream of bubbles. This wasn’t as easy as it sounds and we had to ration our bubbles to make it the whole way. Then, on an open water dive, the instructor took turns holding us with one hand and gripping a rope with the other while we took a breath, took the second stage out of our mouths, and then went for the surface, breathing out all the way. Up, down, up, down, the instructor went, with each student—one at a time. 

Courtesy PADI Worldwide. Copyright 2021, used with permission.

Most of today’s recreational dive courses do not include buddy breathing, they teach gas sharing with an alternate air source (AAS). Even before COVID-19, the buddy breathing skill had disappeared from most recreational training programs. The controlled emergency swimming ascent (CESA) has also disappeared from some programs. 

When I became an instructor, I made many hundreds of these but, now that I think about it, I don’t recall ever seeing anyone actually make one for real after running out of gas. These days everyone dives with two second stage regulators. In technical diving, we even dive with at least two cylinders; so, I wonder, do technical divers run out of gas and, if they do, then why?

What Do The Experts Say?

Some years ago, I asked a panel of 27 diving experts a similar question regarding recreational divers in general.1 The panel consisted of nine diving/hyperbaric doctors who had treated hundreds of injured divers; nine expert dive guides, most of whom were instructors; and nine expert recreational divers who had dived all over the world and written hundreds of feature articles for dive magazines. 

At the time, I suspected divers mostly ran out of gas because they didn’t pay attention to their gauge. But, to my surprise, the experts suggested about 20 reasons, such as diving deeper than usual, diving in a current, not wanting to end the dive for their buddy, using a smaller tank than their buddy, being underweighted, and many others, all of which sounded plausible. 

I sent the whole list of potential causes back to the group and asked them to rank, in their opinion, the five most likely causes. Then I gave five points to everyone’s most likely potential cause, four points to the second most likely, and so on. I added up all of the points and then ranked all the causes according to the total score. Then I sent this ranked list back to the group for one last review and asked them to consider the “weight of opinion” from the group as a whole, and to reconsider their top five reasons. 

As an expert panel, the group moved toward consensus. Just as I’d suspected, failing to monitor the gauge was the number one proposed potential cause of running out of gas, followed by inexperience, overexertion, inadequate training, and poor dive planning. Other than perhaps an unexpected current or underweighting leading to overexertion, the proposed reasons leaned toward human factors rather than the other two types of factors in the classic diving injury causal triad—those being environmental factors and equipment factors (Figure 1).2,3,4

Figure 1: The classic diving injury causal factors triad 2,3,4

The process I’d followed to gather expert consensus of opinion is called a “Delphi” process, which was originally developed by International Business Machines Corporation (IBM) to make forecasts on matters about which there was considerable uncertainty i.e. where there is little data. Opinions aren’t solid evidence; however, they can point towards a direction worth investigating. 

Next, I visited Divers Alert Network(DAN) as an intern and worked on an analysis of diving fatalities within a subset of technical divers—cave divers. More on that later, but while there, I had the opportunity to examine a large dataset of recorded dives from Project Dive Exploration, headed by Drs. Richard Vann and Petar Denoble. 

The dataset we had at that time revealed over 50,000 dives recorded by more than 5,000 recreational divers, (including an unknown number of technical divers). We examined these data in two ways. First, to control for environmental and equipment factors, and to focus on demographic (or human) factors, we counted each diver just once and compared those divers who had reported running out of gas, (during any recorded dive in that dataset), with divers who had not run out of gas. Surprisingly (to me), having run out of gas was more common than expected among older females (males were more likely to report other problems, like rapid ascent). 



Next, to control for the human factors, we looked at just the dives made by divers who had made both at least one dive where they ran out of gas, and at least one dive where they did not run out of gas. I wanted to know what it was about those dives that might have caused the divers to run out of gas. Well, it turned out the out-of-gas dives were deeper, shorter (probably because they were deeper), often made from a live-aboard or charter boat, and involved a higher perceived workload.5 Hmmm… Perhaps overexertion was a factor after all.

After returning to Western Australia to undertake a PhD researching this, I spent the next few years recording 1,000 recreational dive profiles made by 500 divers. I recorded their start and end pressures, tank size, and noted factors such as current, how they felt their workload was (resting/light, moderate, or severe/exhausting), how many dive experiences they had, and what previous dive training they had completed. For the analysis, dives made by divers who exited with <50 bar/725 psi of pressure (needle in the red zone, n=183) were compared with other dives recorded at the same time at the same dive site (n=510) by divers who exited with >50 bar/725 psi pressure remaining (needle not in the red zone). 

Ending a dive low on gas was correlated with younger males with a longer break since their last dive, fewer lifetime dives, at deeper depth, and a higher rate of gas consumption (adjusted to an equivalent surface air consumption (SAC) rate, for comparison between dives made at different depths). Perhaps more tellingly, compared with 1% of the dives with >50 bar/725 psi at the exit, 11% of the low-on-gas divers reported being surprised at the end of the dive by how low their remaining gas pressure was.6 A more detailed analysis of the average workload associated with recreational diving, using this same dataset, identified that higher perceived SAC rate was not associated with sex but was associated with older age, lower dive certification, fewer years of diving, higher perceived workload, and other factors.7 

Technically Out of Gas

Returning to the topic of technical diving, a colleague and I re-examined the DAN cave diving fatality reports collection that I had worked with as an intern, and this time we concentrated on the previous 30 years of data: 1985-2015. Dividing it into two equal halves which we referred to as the “early” and “late” groups, reading each report carefully, and using a reliable cave diving fatality factors flow-chart previously developed,5 we classified factors associated with each cave diving fatality and then compared the two groups. 

In the late (more recent) group, the proportion of cave divers who were trained in cave diving had significantly improved, perhaps due to increased awareness of the need for proper cave diver training before entering a flooded cave. The majority of the 67 trained cave divers in our dataset were diving with two cylinders on their back (doubles), and the late group was diving further into the cave than the early group. Of the 67 trained cave divers, 41 (62%) had run out of gas. Looking at the five “golden rules” of cave diving, the “rule of thirds” was the most common (n=20) rule that was suspected to have been broken by the trained cave divers: the most lethal.9

So, it would seem that some technical divers do run out of gas, though thankfully that appears rare. We should bear in mind that cave divers may differ from other types of technical divers in their procedures, demography, and equipment; their environment (by definition) certainly differs from that of wreck divers. 

Currently, I know of no ongoing research into out-of-gas incidents among technical divers, other than the current Diving Incident Reporting System, hosted by DAN. An analysis of the first 500 reported incidents recently examined every incident—recreational and/or technical—during which the diver ran out of gas.10 The sample (n=38) was divided into two groups: those who made a controlled ascent (e.g. on a buddy’s donated regulator) and those who made rapid ascent (e.g. a bolt to the surface). 

Among divers who reported having run out of gas, but survived to report the incident, 57% of the rapid ascents resulted in a reported injury. Among the 24 controlled ascents, just 29% reported an injury.10

Among divers who reported having run out of gas, but survived to report the incident, 57% of the rapid ascents resulted in a reported injury. Among the 24 controlled ascents, just 29% reported an injury.10 This modern finding is in line with the statistics reported 27 years ago by Dr. Chris Acott when he analyzed more than 1,000 diving incident reports. Examining 189 out-of-gas incident reports, Dr. Acott found 89 made a rapid ascent, and 58% of those reported an injury. Among the 79 controlled ascents, only 6% reported an injury.11 

Table 1 shows the total number of dive incidents in each category, after adding both studies together. It seems to me that, while we have moved on from buddy-breathing and the controlled emergency swimming ascent, in the last 30 years the problem of running out of gas has not gone away. 

No Injury
(row %)
Injury
(row %)
Total
(col %)
Non-rapid ascent 91 (88)12 (12)103 (50)
Rapid ascent43 (42)60 (58)103 (50)
Total134 (65)72 (35)206 (100)
Table 1: Injuries among 206 out-of-gas dive incidents by ascent rate10,11

In conclusion, the evidence confirms what we all know: running out of gas is associated with diving injuries and fatalities. It appears that the level of correlation of demography information (like age and sex) with out-of-gas incidents may depend upon the study design, the pool of divers studied, and/or the specific potential causes of running out of gas being investigated. For example, in one study, older females were more likely to self-report out of gas problems; in another study, young males’ remaining gas was measured and observed to be low. In yet another study, SAC rate increased when perceived workload increased, regardless of sex. 

Therefore, I’d suggest it is prudent to consider everyone potentially at risk of running out of gas and, in order to mitigate this risk, both recreational and technical divers should be proficient in gas planning and monitoring their remaining gas, regardless of age and/or sex. 

[Ed.note—Most agencies today require some level of proficiency in managing emergency out of gas scenarios. For example, GUE requires divers at all levels to train regularly for this eventuality. This training also emphasizes gas management strategies like “minimum gas reserves” and the related “one third” rule to ensure divers always have enough supply to share gas aka buddy breathe from any point in the dive, and all the way to the surface. Violation of these strategies risks insufficient gas in all environments.]

Influencers

The influence of workload is interesting, and technical divers who perceive an elevated workload may well remember that this has been associated with both higher rates of gas consumption and unexpectedly running low on gas. So, when detecting a current or perceiving an elevated workload, I recommend keeping a closer-than-usual eye on the remaining gas and, if a current is suspected before the dive, then plan for an elevated SAC rate. 

The influence of training/certification consistently appears to be associated with the risk of running out of gas, as does having made fewer lifetime dives. Highly trained and experienced divers might bear this in mind when diving with buddies who are newer to our sport. Offer them opportunities to gain experience and recommend additional training when they are ready. We were all inexperienced once.

Technology has improved in recent years; for example, tank pressure transponders are more reliable today than ever before. It is possible that in the future these resources, coupled with audible alarms, may prove to be highly effective at preventing technical divers from running out of gas. Until we know how effective such alarms are at preventing out-of-gas dives, our best course of action is to dive within the limits of our training and experience, and to keep an eye on our remaining gas. 

See companion story for an estimate of the risk: What is the Risk of Running Out of Gas?

Do you think that it could it happen to you?

References

1. Buzzacott P, Rosenberg M, Pikora T. Using a Delphi technique to rank potential causes of scuba diving incidents. Diving and Hyperbaric Medicine. 2009;39(1):29-32.

2. Edmonds, C. and Walker, D. Scuba diving fatalities in Australia and New Zealand: The human factor. SPUMS J. 1989;19(3): 94-104.

3. Edmonds, C. and Walker, D. Scuba diving fatalities in Australia and New Zealand: The environmental factor. SPUMS J. 1990;20(1): 2-4.

4. Edmonds, C. and Walker, D. Scuba diving fatalities in Australia and New Zealand: The equipment factor. SPUMS J. 1991;21(1): 2-5.

5. Buzzacott P, Denoble P, Dunford R, Vann R. Dive problems and risk factors for diving morbidity. Diving and Hyperbaric Medicine. 2009;39(4):205-9.

6. Buzzacott P, Rosenberg M, Heyworth J, Pikora T. Risk factors for running low on gas in recreational divers in Western Australia. Diving and Hyperbaric Medicine. 2011;41(2):85-9.

7. Buzzacott P, Pollock NW, Rosenberg M. Exercise intensity inferred from air consumption during recreational scuba diving. Diving and Hyperbaric Medicine. 2014;44(2):74-8.

8. Buzzacott P, Zeigler E, Denoble P, Vann R. American cave diving fatalities 1969-2007. International Journal of Aquatic Research and Education. 2009;3:162-77.

9. Potts L, Buzzacott P, Denoble P. Thirty years of American cave diving fatalities. Diving and Hyperbaric Medicine. 2016;46(3):150-4.

10. Buzzacott P, Bennett C, Denoble P, Gunderson J. The Diving Incident Reporting System. In: Denoble P, editor. DAN Annual Diving Report 2019 Edition: A Report on 2017 Diving Fatalities, Injuries, and Incidents. Durham (NC): Divers Alert Network; 2020. p. 49-67.

11. Acott C. Diving incidents – Errors divers make. Safe Limits: An international dive symposium; 1994; Cairns: Division of Workplace Health and Safety.

12. Buzzacott P, Schiller D, Crain J, Denoble PJ. (2018). Epidemiology of morbidity and mortality in US and Canadian recreational scuba diving. Public Health 155: 62-68. 

13. Buzzacott P. (editor) (2016). DAN Annual Diving Report 2016 Edition: A report on 2014 data on diving fatalities, injuries, and incidents. Durham, NC, Divers Alert Network

14. Buzzacott P (editor) (2017). DAN Annual Diving Report 2017 Edition: A Report on 2015 Diving Fatalities, Injuries, and Incidents. Durham (NC), Divers Alert Network.

15. Buzzacott P and Denoble PJ. (editors) (2018). DAN Annual Diving Report 2018 Edition: A report on 2016 data on diving fatalities, injuries, and incidents. Durham, NC, Divers Alert Network

16. Denoble PJ. (editor) (2019). DAN Annual Diving Report 2019 Edition: A Report on 2017 Diving Fatalities, Injuries, and Incidents. Durham (NC), Divers Alert Network.

You can add a diving incident to the DAN database by name or anonymously here: Diving Incident Reporting System (DIRS).


Dr. Peter Buzzacott MPH, PhD, FUHM, is a former PADI Master Instructor and TDI Advanced Nitrox/Decompression Procedures instructor, having issued >500 diver certifications. Today he is an active cave diver, holding various advanced cave diver certifications including advanced (hypoxic) trimix diver, and he is gradually gaining experience with CCR diving. To finance this, he conducts research into diving injuries and decompression/bubble modeling at Curtin University in Perth, Western Australia.

Diving Safety

What Happened to Solid State Oxygen Sensors?

The news in 2016 that Poseidon Diving Systems would be incorporating a solid state oxygen sensor in their rebreathers sent a buzz through the rebreather community. Galvanic sensors, along with their legacy-1960s “voting logic” algorithms to boost reliability, had long been considered the weakest link in closed circuit rebreathers. Many heralded Poseidon’s subsequent 2017 roll-out as the dawn of a new era in rebreather safety. Five years later, Poseidon remains one of two companies (the other strictly military) to have adopted optical sensors. Technology reporter and tech diver Ashley Stewart examines some of the reasons why.

Published

on

By

by Ashley Stewart.

Header image: Karst Underwater Research (KUR) rebreather divers at Weeki Wachee. Photo by Kirill Egorov

For years, it’s been said there’s a revolution coming for the closed-circuit rebreather— a new, more reliable, safer replacement for the traditional electro-galvanic oxygen sensor, widely considered the weakest component of rebreathers. In March 2017, that revolution looked to be just over the horizon. Poseidon Diving Systems began shipping an offboard solid state sensor to supplement the MKVI’s and SE7EN’s galvanic sensors and offered to license the technology to other manufacturers. Though Poseidon subsequently incorporated the solid state sensor into its SE7EN rebreathers, nearly five years have passed, and not much else has changed.

Poseidon remains the only manufacturer using solid state sensors in recreational rebreathers. No other companies have licensed Poseidon’s technology. Major tech diving manufacturers—including JJ-CCR and Divesoft—say they don’t believe the technology in general is ready for use in rebreathers. Some manufacturers worry that the sensors won’t function accurately in humid environments over a wide range of pressures, and they claim that addressing these challenges will be costly. Meanwhile, divers who tested Poseidon’s sensors offered mixed reviews, and even the inventor who sold the sensor validation technology patent to Poseidon believes they should be used along with traditional sensors. (Poseidon gives divers the option of combining the sensors).



Poseidon’s solid state sensor integrated into the SE7EN rebreather. Photo courtesy of Poseidon.

Oxygen sensors are the enabling technology that made mixed gas rebreathers possible, replacing rebreathers that could only be used with pure oxygen. In 1968, marine scientist Walter Starck introduced the first commercial CCR, called the Electrolung, which used polarographic sensors. The next year, BioMarine Industries launched its CCR-1000, the predecessor of the US Navy’s Mk-15/16. The unit was the first mixed gas rebreather to use galvanic sensors, which do not require a power supply. 

In addition to removing a diver’s exhaled carbon dioxide, a rebreather must measure and maintain a safe and efficient level of oxygen, as measured by the partial pressure of oxygen, or PO2, via oxygen sensors.

Measuring PO2 correctly is critical, and failures can be fatal. Too little oxygen can cause hypoxia and loss of consciousness, and too much can result in central nervous system toxicity and convulsions. Since sport divers began using CCRs over twenty years ago, both conditions have caused numerous drowning fatalities.

With the exception of Poseidon and military manufacturer Avon Underwater Systems, modern close circuit rebreathers have more or less used the same type of sensor since the 1960s. Rebreathers typically use three galvanic sensors, averaging the readings of the two closest sensors and ignoring the third in a protocol called “voting logic,” originally created by Starck in response to the sensors’ noted unreliability.

Even with this voting logic, however, the sensors can be unreliable (See “PO2 Sensor Redundancy” in Additional Resources below). The galvanic sensors are cheap and time-tested, but they need to be recalibrated before every dive and expire after about a year. The new sensors—called “solid state sensors” or optical sensors—are expected to be more precise, reliable, and durable, though significantly more costly.

An illustration of luminescent quenching technology

Galvanic sensors are essentially wet-cell batteries that generate a millivolt current proportional to the PO2 in the loop. Conversely, Poseidon’s solid state sensor uses luminescent quenching, wherein a red LED light excites the underside of a special polymer surface, which is covered with a hydrophobic membrane and exposed to the gas in the breathing loop. A digital color meter then measures the responding change in fluorescence, which is dependent on oxygen pressure, and an algorithm calculates the PO2.

Experts more or less agree that the right solid state sensor could make rebreathers safer, but the market is split on whether the technology is ready for use in rebreathers and just how much better they’d have to be to justify the cost.

Field Test Results

Poseidon advertises its sensor as “factory-calibrated and absolute, delivering unsurpassed operating life, shelf life, and calibration stability.” Richard Pyle, a senior curator of ichthyology at Hawaii’s Bishop Museum who works with Poseidon-affiliated Stone Aerospace, has tested Poseidon’s sensors for years, initially as a passive offboard check against Poseidon’s traditional galvanic sensors. Later, in November 2019, he said he began testing Poseidon’s prototype with the solid state sensor as the primary sensor in the unit. “From my perspective as a rebreather diver, this is the most significant game-changing way to know what you are breathing,” Pyle said. “We will never go back to the old oxygen sensors.”

Poseidon divers at 110 m/359 ft. Photo by John L. Earle

Pyle said he’s yet to fully analyze the data he’s collected to compare the performance of the solid state sensors against the galvanic sensors, but that  he’s had zero failures with the solid state sensors in the time he would have expected to have 50 to 100 failures with the galvanic sensors.

Likewise, Brian Greene, a Bishop Museum researcher who has tested the Poseidon sensors with Pyle, estimated that he’s made hundreds of dives with the solid state sensors without failure. But, not everyone has had this experience.

Sonia Rowley, an assistant researcher at the Department of Earth Sciences in University of Hawai’i at Mānoa, told InDepth that she experienced a variety of repeated failures when testing Poseidon’s system alongside Pyle beginning in 2016 and 2017, and Rowley dictated to InDepth specific dive logs detailing many of the failures. She wrote about her experience in the book “Close Calls.

Poseidon CEO Jonas Brandt said the company has tested the sensors since 2017 at different depths and temperatures, and that it has only seen one possible failure.



Arne Sieber is a sensor technology researcher who said he developed the O2 sensor validation technology used in the Poseidon rebreather and sold the patent to Poseidon. Sieber is now researching uses for the solid state sensor including in the medical market. He told InDepth he believes the best way to incorporate the solid state sensors into rebreathers would not be to substitute one for the other, but to combine sensor types and design a rebreather that incorporates both. 

Traditional galvanic sensors have advantages over the solid state sensors, Sieber said—they’re cheap, simply designed, low-voltage, and time-tested. Also, while solid state sensors are very accurate at measuring low PO2, they become less sensitive at about 1.6 bar, and are more prone to incorrect readings of higher PO2 levels than galvanic sensors. As for whether the sensors can function in humid environments, Sieber said the sensors can work well in liquids, such as when used for blood analysis (though the sensors are used to measure much lower partial pressures of oxygen) and for measuring oxygen content in the sea. Liquid can delay the amount of time it takes a sensor to read a partial pressure, but it does not falsify the results, Sieber said. Of Poseidon’s system, Sieber said, “It’s a good start. It’s very important that someone starts. Someone always has to be the first one.”

Brandt said divers have the option of combining sensors in the company’s SE7EN rebreather, using either two galvanic sensors, two solid state sensors, or one of each, and said it could be argued that using one of each sensor is the most reliable.

Meanwhile, a catalyst may be coming to encourage the development and adoption of solid state sensors in Europe, Sieber said. European Union rules restrict the use of hazardous substances in electrical and electronic equipment, but galvanic sensors (which have an anode made of lead) have been granted an exemption in medical products because there is not a suitable alternative. The exemption is set to expire.

Poseidon’s solid state sensor sells to end users for as much as around $1,500USD, and its SE7EN rebreather units use a maximum of two onboard sensors. [Note: Poseidon sells the sensor for 6800SEK plus VAT from its website, which equates to 944 USD, some outlets in the states sell them for much higher]. Galvanic sensors, meanwhile, cost around $100USD, last one year and divers use three at a time. And, that’s just the cost of the sensors themselves: Manufacturers have to make significant investments in, and upgrades to, electronics systems to accommodate solid state sensors. 

Fathom rebreather lid showing its galvanic sensors. Photo courtesy of Fathom Dive Systems, LLC.

As for how long the sensors actually last, even the manufacturers don’t yet know. Poseidon has some from 2014, and they still work but have to be factory calibrated every two years. Galvanic sensors need to be replaced annually, while solid state sensors are expected to last much longer.

Brandt chalks the debate about its sensors up to competitiveness in the market. “I don’t think anyone likes that somebody cracked the nut,” Brandt told InDepth. Poseidon is ready to share the technology with other dive companies and manufacturers, Brandt said, but there have been no deals to date. “We wanted to raise the bar in technology and safety with the rebreathers, and to be honest, we haven’t said to anyone in this business that this technology is exclusive or proprietary.”

Market Interest

When the company first debuted its sensor, Brandt reported that companies like Hollis and Shearwater Research expressed interest in licensing the technology, but nothing has come so far of those discussions. Brandt did say one manufacturer reached out right before the pandemic. He declined to say which, but shared that it was a European company. Hollis brand manager Nick Hollis said his team recalls a conversation with Poseidon, but that it was back in 2014 or even earlier.

Shearwater director of sales and marketing Gabriel Pineda said the company is still interested in solid state sensors, but they see an issue with the price. “If you make the economic case of traditional galvanic sensors versus solid state or optical sensors, you have to dive a lot, and it takes a long time for these to make economic sense for a diver.”

Of course, Shearwater is not a CCR manufacturer, but the company is interested in seeing whether the sensors would be viable for use with its electronic control system that is used by a majority of rebreathers on the market. Shearwater currently has no immediate plans to license the technology from any manufacturer but Pineda said the interest remains. 

Meanwhile, Poseidon’s solid state sensor CCR is still making headway, Brandt said. The current biggest buyer of the Poseidon units is the military (Brandt said three European Union countries’ forces are actively using the sensors). The sales have continued throughout the pandemic, and, over the past six months, Poseidon has started an upgrading program, allowing divers to add the new sensors to their old units. Poseidon is looking into a program Brandt compares to Apple Care, where customers can pay a fee for maintenance throughout the life of the sensor.

Solid state sensors replace numerous galvanic sensors which have a one-year life. Photo courtesy of Richard Pyle.

Meanwhile, Avon Underwater Systems is using three solid state sensors in its MCM100 military rebreather. Kevin Gurr, a rebreather designer and engineer who sold his company, VR Technology Ltd., to Avon, said the company uses the sensors “because of the increased safety and the decreased user burden as far as daily calibration.”

Gurr, who designed and produced the Ouroboris and Sentinel closed circuit rebreathers at his prior company VR Technologies Ltd., believes it’s the cost that has discouraged other manufacturers. “It shouldn’t be about cost at the end of the day,” Gurr said. “The digital interface is so much safer.”

Martin Parker, managing director of rebreather manufacturer AP Diving, said his company follows solid state sensor development but has yet to come across a sensor that meets its accuracy requirements. One such sensor using luminescence quenching can achieve good accuracy through a replacement disk the user must apply to the sensor surface after each use.

“Having been in the diving business for 50 years, we don’t believe it is on any diver’s wish list to have to re-apply every diving day a new component, as simple as that is to do,” Parker told InDepth. “With no easy external measure of accuracy prior to the dive, it is easy to foresee that many divers would ‘push their luck’ and use the discs for multiple days, then when they get away with it, they would encourage other divers to do the same… with the inherent risk of DCS or O2 toxicity.”

Parker said that he’s aware of two additional sensors under development, but neither has shown a working product yet. He declined to identify any of the manufacturers, citing commercial sensitivity. “Hopefully, we will get these to evaluate in the next 12 months,” Parker said.

Divesoft co-founder Aleš Procháska said he believes Poseidon’s approach to the sensor could “lead to success.” Speaking generally about solid state sensors rather than about Poseidon’s specifically, Procháska said his company isn’t yet utilizing solid state sensors because he believes the sensors are unable to function in humid environments with extreme water condensation and not applicable over a  wide range of pressures. To be able to use one of these sensors in a rebreather, Divesoft wants it to be durable in high humidity, consume less energy, and have a good price-to-lifetime ratio. 

“It is possible to build a CCR with the currently available O2 solid state sensor but not without sacrificing important properties of the breathing apparatus,” he said, such as size and energy. “Overall, the reasons why no one currently sells this technology on the market seems to be quite simple. It’s extremely difficult to come up with a suitable and functional principle that would lead to a cheap, small, and low energy consuming solid-state sensor. Despite this, I do believe that it’s only a matter of time until someone solves this one.” Asked via email about the status of DiveSoft’s own work on the technology, Procháska replied, “Well, as I said earlier, it’s just a matter of time,” adding the text, “Aleš smiles.”

JJ-CCR lid showing its three galvanic sensors. Photo by Kees Beemster Leverenz.

Halcyon COO Mark Messersmith said that divers are slow to embrace new technologies in general, and the current sensors just aren’t deficient enough to merit widespread adoption or the investment from manufacturers. “It’s not unlike many other technologies,” Messersmith told InDepth. “People are often slow to embrace a new technology if the existing technology is functional. The existing tech needs to be vastly deficient, and existing oxygen sensors are still largely functional.” 

The bottom line: Solid state sensors might very well be safer, but there isn’t enough incentive for the market to make them a reality. 

David Thompson, designer of the JJ-CCR, told InDepth they don’t use the sensors because he doesn’t believe the technology is ready yet and research in that area is extremely expensive and difficult for what he believes is essentially a small market. “Analog cells have a long history, and in the right hands are very reliable, easily available, and have a long history of working in a rebreather environment which is very hostile,” Thompson said, adding that high humidity and temperature in a rebreather is a challenge for any sensor. “I am sure it will be in the future, but that future won’t be here yet.”

Additional Resources:

InDepth: Where Have All the Sensors Gone? Assessing the Global Oxygen Sensor Shortage

Rebreather Forum 3 Proceedings: PO2 Sensor Redundancy by Nigel A. Jones p. 193-202

Alert Diver: Oxygen Sensing in Rebreather Diving by Michael Menduno

Wikipedia: Electro-galvanic oxygen sensor


Photo by Daniel McMath 

Ashley Stewart is a Seattle-based technology journalist and GUE Tech 1 diver. Reach her via email: ashannstew@gmail.com, Twitter: @ashannstew, or send a secure message via Signal: +1-425-344-8242.

Continue Reading

Thank You to Our Sponsors

Subscribe

Education, Conservation, and Exploration articles for the diving obsessed. Subscribe to our monthly blog and get our latest stories and content delivered to your inbox every Thursday.

Latest Features