Connect with us

Community

Trip Report: The Wreck of the MT Haven

Belgium service member, explorer and tech instructor Kurt Storms reports on a recent trip—his first post-lockdown—to the wreck of the MT Haven, the largest shipwreck in the Mediterranean. The 334 m/1079 ft long crude oil tanker caught fire and exploded while it was unloading its cargo to a floating platform off the coast of Genoa, Italy. The fire was extinguished and the ship towed to within 1.5 km/.9 miles of shore where it sank in April 1991, but not before dumping an estimated 50,000 tons of crude oil, making it the worst oil spill in the Med. The wreck lies between 33-83 m/108-273 f.

Published

on

Text and images by Kurt Storms. Header image: The stair to the MT Haven’s upper cabins.

After not being able to travel for an extensive period because of the COVID-19 pandemic, we traveled back to Italy.  I completed my instructor course—CCR-OC Trimix Instructor—under the supervision of IANTD ITT Paul Lijnen. After a few exciting and heavy days, I can now proudly call myself a fully-fledged IANTD CCR/OC Trimix Instructor.

I owe this certification to my good students and help and support from the two other instructors who also obtained this rank. The course took place on the most beautiful wreck of the Mediterranean—the MT Haven.

The front of the steering cabin.

MT Haven was a VLCC (Very Large Crude Carrier)-Class oil-tanker built as Amoco Milford Haven in 1973. The Haven was incredibly large: 334 m/1,069 ft long with a 51 m/167 ft beam and a displacement tonnage of 110,000 tons. In 1987, it was hit by a missile in the Persian Gulf during the Iran-Iraq War. Extensively refitted in Singapore, it was then sold to ship brokers who leased it to Troodos Shipping.

Around 12:30 pm on April 11, 1991, the Haven was unloading a 230,000 ton cargo of crude oil on a floating platform 11 km/7 miles off the coast of Genoa, Italy. Having transferred 80,000 tons, it disconnected from the platform for a routine internal transfer operation to pump oil from two side-holds into a central one. While still loaded with 144,000 tons of crude oil, the ship exploded and caught fire, killing five crew members. As the fire engulfed the ship, flames rose 100 m/328 ft high and, after a series of further explosions, between 30-40,000 tons of oil poured into the sea. 

The Italian authorities acted quickly with hundreds of men fighting a fire which was difficult to access and control. They distributed more than 9 km/6 miles of inflatable barriers around the vessel, submerged 1 m/3 ft below the surface, to control the spillage. 

On day two, Italian authorities towed the MT Haven closer to the coast in a bid to reduce the coastal area affected and ease intervention efforts. As the bow slipped beneath the surface, the towing crew passed a steel cable around the rudder, and tugs applied towing pressure. On April 14, the 250 m/820 ft main body sank 1.5 km/.9 miles from the coast, between Arenzano and Varazze, flooding the Mediterranean with up to 50,000 tons of crude oil, making it the worse oil spill in the Mediterranean.

The Haven is also the Mediterranean and Europe’s largest shipwreck in the sea and lies at a depth of 33 m/108 ft to 83 m/273 ft off the coast of Arenzano (Genoa).

Stairway to the upper deck of the MT Haven

I have been diving on this beautiful and unique wreck for the last three years, and I can truly say that I am in love with this big baby. But I want to warn every reader—she can be a killer and a dangerous monster for untrained or inattentive divers.

Depending on the day, the current can shift from mild to strong, and the visibility can change from a perfect +30 m/+100 ft to a very poor 5 m/16 ft. Inside the wreck  is a giant labyrinth where one can get lost, like in any cave system. There are also  sharp metal edges and huge amounts of silt that can turn the water milk-like and trap you. The wreck is enormous and deep, and you can lose your orientation as well as your notion of time and your gas consumption. So, plan your dive, and dive your plan.

  • Halcyon Sidemount
  • DIVE RITE
  • Area 9
  • Subscribe for free

No heroes allowed here: You must be humble and patient enough to discover the wreck step by step, piece by piece, and according to your own level of training and experience. The 250 m/820 ft long main section of the Haven lies peacefully in an upright position. Part of the superstructure, which originally reached a depth up to 24 m/79 ft is now gone, and the shallowest part of the entire wreck, the smokestack, now stands at 33 m/108 ft deep. [Note, that a piece of the upper deck was found at 94 m/310 fy by Andrea Bada.]

Resting at a depth of 40 m/131 ft, you find the empty wheelhouse, from which Captain Petros Gregorakys from Cypriot, maneuvered the tanker—he later died in the explosion. All the instruments and controls burned away before sinking. Installed on the upper deck, isa memorial plate and statues of the Virgin Maria. You can easily penetrate the steering house by heading down or up the inner stairs. It is also very easy to go up or down the main lift opening that goes through all bridges, or to follow the outside walls. The windows on the side are numerous, but too small for most divers, but every room has a door.

Inside the wreck at 50 m/163 f

There are six different bridges about 23 m/75 m high with bedrooms, the kitchen, and workrooms. You can penetrate almost everywhere, but it’s a labyrinth— consider it as a cave and use a guideline. From the bridge, technical divers can descend to the deck in the back of the tanker, past the winches, pipes, and valves that are proportional to the size of the ship, and then free fall down to the propeller at 81 m/266 ft. Here, the excessiveness is still striking—the  rudder is 20 m/66 ft high and the propeller more than 7 m/23 ft in diameter. 

The dark becomes darker as we move under the shadow of the wreck and lose light from the surface. At its maximum depth, the Haven is breathtaking; looking up from this point, she is majestic.

Captain’s walkway bent by the heat of the fire.

The engine room entrance is just under the chimney below -52 m/171 ft, and from there you can go deep inside the ship. Here, you will find a gigantic 8-cylinder diesel engine. The various steel panels and counters are still in perfect shape and intact. Going up on the port side, there is a huge opening left by one of the two explosions. The gaping hole is so large that it is difficult to comprehend its dimensions, the plates twisted like a broken can.

You need to be a technical diver to dive the MT Haven and complete these dives with hypoxic gasses. As always, don’t do this dive without proper training. There are two dive centers that can provide all of your supplies for diving the Haven. Both are in the Marina of Arenzano. Organization is perfect, and safety non-negotiable. 

There is a fixed deco station with decompression bars at 6 m/20 ft and 3 m/10 ft with sufficient spare tanks.The descent lines are fixed and lead you down to the quarterback at -33 m/108 ft.

Enjoy your dive!

Subscribe for the InDepth Newsletter

Kurt Storms

Kurt Storms is a member of the Belgian military, an underwater cave explorer, and an active technical /cave/rebreather diving instructor for IANTD. He started his dive career in Egypt on vacation, and the passion for diving never ended. Kurt is also founder and CEO of Descent Technical Diving. He dives several CCRs such as AP Diving, SF2,  and Divesoft Liberty SM. Kurt is also one of the push-divers documenting a new slate mine in Belgium (Laplet). This project was news on Belgium Nationale TV. Most of his dives are mine and cave dives.  In his own personal diving, Kurt’s interests are deep extended-range cave dives. His wife (Caroline) is also an enthusiastic cave diver. In his free time, he explores Belgium’s slate mines, and often takes his camera with him to document the dives.

Community

Twenty-five Years in the Pursuit of Excellence – The Evolution and Future of GUE

Founder and president Jarrod Jablonski describes his more than a quarter of a century long quest to promote excellence in technical diving.

Published

on

By

by Jarrod Jablonski. Images courtesy of J. Jablonski and GUE unless noted.

The most difficult challenges we confront in our lives are the most formative and are instrumental in shaping the person we become. When I founded Global Underwater Explorers (GUE), the younger version of myself could not have foreseen all the challenges I would face, but equally true is that he would not have known the joy, the cherished relationships, the sense of purpose, the rich adventures, the humbling expressions of appreciation from those impacted, or the satisfaction of seeing the organization evolve and reshape our industry. Many kindred souls and extraordinary events have shaped these last 25 years, and an annotated chronology of GUE is included in this issue of InDEPTH. This timeline, however, will fail to capture the heart behind the creation of GUE, it will miss the passionate determination currently directing GUE, or the committed dedication ready to guide the next 25 years.

Photo courtesy of Kirill Egorov

I don’t remember a time that I was not in, around, and under the water. Having learned to swim before I could walk, my mother helped infuse a deep connection to the aquatic world. I was scuba certified in South Florida with my father, and promptly took all our gear to North Florida where I became a dive instructor at the University of Florida. It was then that I began my infatuation with cave diving. I was in the perfect place for it, and my insatiable curiosity was multiplied while exploring new environments. I found myself with a strong desire to visit unique and hard-to-reach places, be they far inside a cave or deep within the ocean. 

My enthusiasm for learning was pressed into service as an educator, and I became enamored with sharing these special environments. Along with this desire to share the beauty and uniqueness of underwater caves was a focused wish to assist people in acquiring the skills I could see they needed to support their personal diving goals. It could be said that these early experiences were the seeds that would germinate, grow, mature, and bloom into the organizing principles for GUE.

Brent Scarabin, Jarrod and George “Trey” Irvine getting ready to dive.
Jarrod with his Halcyon PVR-BASC prototype.
George Irvine and Jarrod conducting the original DIR workshop.

The Pre-GUE Years

Before jumping into the formational days of GUE, allow me to help you visualize the environment that was the incubator for the idea that became GUE’s reality. By the mid-1990s, I was deeply involved in a variety of exploration activities and had been striving to refine my own teaching capacity alongside this growing obsession for exploratory diving. While teaching my open water students, I was in the habit of practicing to refine my own trim and buoyancy, noticing that the students quickly progressed and were mostly able to copy my position in the water. Rather than jump immediately into the skills that were prescribed, I started to take more time to refine their comfort and general competency. This subtle shift made a world of difference in the training outcomes, creating impressive divers with only slightly more time and a shift in focus. In fact, the local dive boats would often stare in disbelief when told these divers were freshly certified, saying they looked better than most open water instructors! 

Area 9

By this point in my career, I could see the problems I was confronting were more systemic and less individualistic. In retrospect, it seemed obvious that key principles had been missing in both my recreational and technical education, not to mention the instructor training I received. The lack of basic skill refinement seemed to occur at all levels of training, from the beginner to the advanced diver. Core skills like buoyancy or in-water control were mainly left for divers to figure out on their own and almost nobody had a meaningful emphasis on efficient movement in the water. It was nearly unheard of to fail people in scuba diving, and even delaying certification for people with weak skills was very unusual. This remains all too common to this day, but I believe GUE has shifted the focus in important ways, encouraging people to think of certification more as a process and less as a right granted to them because they paid for training. 

L2R: Jarrod Todd Kincaid and Rickard Lundgren plotting their 1999 Britannic expedition.

The weakness in skill refinement during dive training was further amplified by little-to-no training in how to handle problems when they developed while diving, as they always do. In those days, even technical/cave training had very little in the way of realistic training in problem resolution. The rare practice of failures was deeply disconnected from reality. For example, there was almost no realistic scenario training for things like a failed regulator or light. What little practice there was wasn’t integrated into the actual dive and seemed largely useless in preparing for real problems. I began testing some of my students with mock equipment failures, and I was shocked at how poorly even the best students performed. They were able to quickly develop the needed skills, but seeing how badly most handled their first attempts left me troubled about the response of most certified divers should they experience problems while diving, as they inevitably would. 

Diving Fatalities

Meanwhile, I was surrounded by a continual progression of diving fatalities, and most appeared entirely preventable. The loss of dear friends and close associates had a deep impact on my view of dive training and especially on the procedures being emphasized at that time within the community. The industry, in those early days, was wholly focused on deep air and solo diving. However, alarmingly lacking were clear bottle marking or gas switching protocols. It seemed to me to be no coincidence that diver after diver lost their lives simply because they breathed the wrong bottle at depth. Many others died mysteriously during solo dives or while deep diving with air. 

One of the more impactful fatalities was Bob McGuire, who was a drill sergeant, friend, and occasional dive buddy. He was normally very careful and focused. One day a small problem with one regulator caused him to switch regulators before getting in the water. He was using a system that used color-coded regulators to identify the gas breathed. When switching the broken regulator, he either did not remember or did not have an appropriately colored regulator. This small mistake cost him his life. I clearly remember turning that one around in my head quite a bit. Something that trivial should not result in the loss of a life. 

Also disturbing was the double fatality of good friends, Chris and Chrissy Rouse, who lost their lives while diving a German U-boat in 70 m/230 ft of water off the coast of New Jersey. I remember, as if the conversation with Chris were yesterday, asking him not to use air and even offering to support the cost as a counter to his argument about the cost of helium. And the tragedies continued: The loss of one of my closest friends Sherwood Schille, the death of my friend Steve Berman who lived next to me and with whom I had dived hundreds of times, the shock of losing pioneering explorer Sheck Exley, the regular stream of tech divers, and the half dozen body recoveries I made over only a couple years, which not only saddened me greatly, but also made me angry. Clearly, a radically different approach was needed.

  • DIVE RITE
  • Area 9

Learning to Explore

Meanwhile, my own exploration activities were expanding rapidly. Our teams were seeking every opportunity to grow their capability while reducing unnecessary risk. To that end, we ceased deep air diving and instituted a series of common protocols with standardized equipment configurations, both of which showed great promise in expanding safety, efficiency, and comfort. We got a lot of things wrong and experienced enough near misses to keep us sharp and in search of continual improvement. 

Casey McKinlay and Jarrod with stages and Gavin scooters in Wakulla Springs. Photo courtesy of David Rhea

But we looked carefully at every aspect of our diving, seeking ways to advance safety, efficiency, and all-around competency while focusing plenty of attention into the uncommon practice of large-scale, team diving, utilizing setup dives, safety divers, and inwater support. We developed diver propulsion vehicle (DPV) towing techniques, which is something that had not been done previously. We mostly ignored and then rewrote CNS oxygen toxicity calculations, developed novel strategies for calculating decompression time, and created and refined standard procedures for everything from bottle switching to equipment configurations. Many of these developments arose from simple necessity. There were no available decompression programs and no decompression tables available for the dives we were doing. Commonly used calculations designed to reduce the risk of oxygen toxicity were useless to our teams, because even our more casual dives were 10, 20, or even 30 times the allowable limit. The industry today takes most of this for granted, but in the early days of technical diving, we had very few tools, save a deep motivation to go where no one had gone before.

All in a dive of diving for the WKPP.

Many of these adventures included friends in the Woodville Karst Plain Project (WKPP), where I refined policies within the team and most directly with longtime dive buddy George Irvine. This “Doing it Right” (DIR) approach sought to create a more expansive system than Hogarthian diving, which itself had been born in the early years of the WKPP and was named after William Hogarth Main, a friend and frequent dive buddy of the time. By this point, I had been writing about and expanding upon Hogarthian diving for many years. More and more of the ideas we wanted to develop were not Bill Main’s priorities and lumping them into his namesake became impractical, especially given all the debate within the community over what was and was not Hogarthian. 

A similar move from DIR occurred some years later when GUE stepped away from the circular debates that sought to explain DIR and embraced a GUE configuration with standard protocols, something entirely within our scope to define.

These accumulating events reached critical mass in 1998. I had experienced strong resistance to any form of standardization, even having been asked to join a special meeting of the board of directors (BOD) for a prominent cave diving agency. Their intention was to discourage me from using any form of standard configuration, claiming that students should be allowed to do whatever they “felt’ was best. It was disconcerting for me, as a young instructor, to be challenged by pioneers in the sport; nevertheless, I couldn’t agree with the edict that someone who was doing something for the first time should be tasked with determining how it should be done. 

This sort of discussion was common, but the final straw occurred when I was approached by the head of a technical diving agency, an organization for which I had taught for many years. I was informed that he considered it a violation of standards not to teach air to a depth of at least 57 m/190 ft. This same individual told me that I had to stop using MOD bottle markings and fall in line with the other practices endorsed by his agency. Push had finally come to shove, and I set out to legitimize the training methods and dive protocols that had been incubating in my mind and refined with our teams over the previous decade. Years of trial and many errors while operating in dynamic and challenging environments were helping us to identify what practices were most successful in support of excellence, safety, and enjoyment.

Forming GUE

Forming GUE as a non-profit company was intended to neutralize the profit motivations that appeared to plague other agencies. We hoped to remove the incentive to train—and certify—the greatest number of divers as quickly as possible because it seemed at odds with ensuring comfortable and capable divers. The absence of a profit motive complemented the aspirational plans that longtime friend Todd Kincaid and I had dreamed of. We imagined a global organization that would facilitate the efforts of underwater explorers while supporting scientific research and conservation initiatives. 

I hoped to create an agency that placed most of the revenue in the hands of fully engaged and enthusiastic instructors, allowing them the chance to earn a good living and become professionals who might stay within the industry over many years. Of course, that required forgoing the personal benefit of ownership and reduced the revenue available to the agency, braking its growth and complicating expansion plans. This not only slowed growth but provided huge challenges in developing a proper support network while creating the agency I envisioned. There were years of stressful days and nights because of the need to forgo compensation and the deep dependance upon generous volunteers who had to fit GUE into their busy lives. If it were not for these individuals and our loyal members, we would likely never have been successful. Volunteer support and GUE membership have been and remain critical to the growing success of our agency. If you are now or have ever been a volunteer or GUE member, your contribution is a significant part of our success, and we thank you. 

Photo courtesy of Kirill Egorov

The challenges of the early years gave way to steady progress—always slower than desired, with ups and downs, but progress, nonetheless. Some challenges were not obvious at the outset. For example, many regions around the world were very poorly developed in technical diving. Agencies intent on growth seemed to ignore that problem, choosing whoever was available, and regardless of their experience in the discipline, they would soon be teaching. 

This decision to promote people with limited experience became especially problematic when it came to Instructor Trainers. People with almost no experience in something like trimix diving were qualifying trimix instructors. Watching this play out in agency after agency, and on continent after continent, was a troubling affair. Conversely, it took many years for GUE to develop and train people of appropriate experience, especially when looking to critical roles, including high-level tech and instructor trainers. At the same time, GUE’s efforts shaped the industry in no small fashion as agencies began to model their programs after GUE’s training protocols. Initially, having insisted that nobody would take something like Fundamentals, every agency followed suit in developing their own version of these programs, usually taught by divers that had followed GUE training. 

This evolving trend wasn’t without complexity but was largely a positive outcome. Agencies soon focused on fundamental skills, incorporated some form of problem-resolution training, adhered to GUE bottle and gas switching protocols, reduced insistence on deep air, and started talking more about developing skilled divers, among other changes. This evolution was significant when compared to the days of arguing about why a person could not learn to use trimix until they were good while diving deep on air. 

To be sure, a good share of these changes was more about maintaining business relevance than making substantive improvements. The changes themselves were often more style than substance, lacking objective performance standards and the appropriate retraining of instructors. Despite these weaknesses, they remain positive developments. Talking about something is an important first step and, in all cases, it makes room for strong instructors in any given agency to practice what is being preached. In fact, these evolving trends have allowed GUE to now push further in the effort to create skilled and experienced divers, enhancing our ability to run progressively more elaborate projects with increasingly more sophisticated outcomes. 

  • Halcyon Sidemount

The Future of GUE

The coming decades of GUE’s future appear very bright. Slow but steady growth has now placed the organization in a position to make wise investments, ensuring a vibrant and integrated approach. Meanwhile, evolving technology and a broad global base place GUE in a unique and formidable position. Key structural and personnel adjustments complement a growing range of virtual tools, enabling our diverse communities and representatives to collaborate and advance projects in a way that, prior to now, was not possible. Strong local communities can be easily connected with coordinated global missions; these activities include ever-more- sophisticated underwater initiatives as well as structural changes within the GUE ecosystem. One such forward-thinking project leverages AI-enabled, adaptive learning platforms to enhance both the quality and efficiency of GUE education. Most agencies, including GUE, have been using some form of online training for years, but GUE is taking big steps to reinvent the quality and efficiency of this form of training. This is not to replace, but rather to extend and augment inwater and in-person learning outcomes. Related tools further improve the fluidity, allowing GUE to seamlessly connect previously distant communities, enabling technology, training, and passion to notably expand our ability to realize our broad, global mission.

Photo courtesy of Kirill Egorov

Meanwhile, GUE and its range of global communities are utilizing evolving technologies to significantly expand the quality and scope of their project initiatives. Comparing the impressive capability of current GUE communities with those of our early years shows a radical and important shift, allowing results equal or even well beyond those possible when compared even with well-funded commercial projects. Coupled with GUE training and procedural support, these ongoing augmentations place our communities at the forefront of underwater research and conservation. This situation will only expand and be further enriched with the use of evolving technology and closely linked communities. Recent and planned expansions to our training programs present a host of important tools that will continue being refined in the years to come. Efforts to expand and improve upon the support provided to GUE projects with technology, people, and resources are now coming online and will undoubtedly be an important part of our evolving future.

The coming decades will undoubtedly present challenges. But I have no doubt that together we will not only overcome those obstacles but we will continue to thrive. I believe that GUE’s trajectory remains overwhelmingly positive, for we are an organization that is continually evolving—driven by a spirit of adventure, encouraged by your heartwarming stories, and inspired by the satisfaction of overcoming complex problems. Twenty-five years ago, when I took the path less traveled, the vision I had for GUE was admittedly ambitious. The reality, however, has exceeded anything I could have imagined. I know that GUE will never reach a point when it is complete but that it will be an exciting lifelong journey, one that, for me, will define a life well lived. I look forward our mutual ongoing “Quest for Excellence.”

See Listings Below For Additional Resources On GUE And GUE Diving!

Jarrod is an avid explorer, researcher, author, and instructor who teaches and dives in oceans and caves around the world. Trained as a geologist, Jarrod is the founder and president of GUE and CEO of Halcyon and Extreme Exposure while remaining active in conservation, exploration, and filming projects worldwide. His explorations regularly place him in the most remote locations in the world, including numerous world record cave dives with total immersions near 30 hours. Jarrod is also an author with dozens of publications, including three books.

A Few GUE Fundamentals

Similar to military, commercial and public safety divers, Global Underwater Explorers (GUE) is a standards-based diving community, with specific protocols, standard operating procedures (SOPs) and tools. Here are selected InDEPTH stories on some of the key aspects of GUE diving, including a four-part series on the history and development of GUE decompression procedures by founder and president Jarod Jablonski.

Anatomy of a Fundamentals Class

GUE Instructor Examiner Guy Shockey explains the thought and details that goes into GUE’s most popular course, Fundamentals, aka “Fundies,” which has been taken by numerous industry luminaries. Why all the fanfare? Shockey characterizes the magic as “simple things done precisely!

Back to Fundamentals: An Introduction to GUE’s Most Popular Diving Course

Instructor evaluator Rich Walker attempts to answer the question, “why is Fundamentals GUE’s most popular diving course?” Along the way, he clarifies some of the myths and misconceptions about GUE training. Hint: there is no Kool-Aid. 

The GUE Pre-dive Sequence

As you’d expect, Global Underwater Explorers (GUE) has a standardized approach to prepare your equipment for the dive, and its own pre-dive checklist: the GUE EDGE. Here explorer and filmmaker Dimitris Fifis preps you to take the plunge, GUE-style.

The Flexibility of Standard Operating Procedures

Instructor trainer Guy Shockey discusses the purpose, value, and yes, flexibility of standard operating procedures, or SOPs, in diving. Sound like an oxymoron? Shockey explains how SOPs can help offload some of our internal processing and situational awareness, so we can focus on the important part of the dive—having FUN!

Standard Gases: The Simplicity of Everyone Singing the Same Song

Like the military and commercial diving communities before them, Global Underwater Explorers (GUE) uses standardized breathing mixtures for various depth ranges and for decompression. Here British wrecker and instructor evaluator Rich Walker gets lyrical and presents the reasoning behind standard mixes and their advantages, compared with a “best mix” approach. Don’t worry, you won’t need your hymnal, though Walker may have you singing some blues.

Rules of Thumb: The Mysteries of Ratio Deco Revealed

Is it a secret algorithm developed by the WKPP to get you out of the water faster sans DCI, or an unsubstantiated decompression speculation promoted by Kool-Aid swilling quacks and charlatans? British tech instructor/instructor evaluator Rich Walker divulges the arcane mysteries behind GUE’s ratio decompression protocols in this first of a two part series.

The Thought Process Behind GUE’s CCR Configuration

Global Underwater Explorers is known for taking its own holistic approach to gear configuration. Here GUE board member and Instructor Trainer Richard Lundgren explains the reasoning behind its unique closed-circuit rebreather configuration. It’s all about the gas!

GUE and the Future of Open Circuit Tech Diving

Though they were late to the party, Global Underwater Explorers (GUE) is leaning forward on rebreathers, and members are following suit. So what’s to become of their open circuit-based TECH 2 course? InDepth’s Ashley Stewart has the deets.

Project Divers Are We

Diving projects, or expeditions—think Bill Stone’s Wakulla Springs 1987 project, or the original explorations of the Woodville Karst Plain’s Project (WKPP)—helped give birth to technical diving, and today continue as an important focal point and organizing principle for communities like Global Underwater Explorers (GUE). The organization this year unveiled a new Project Diver program, intended to elevate “community-led project dives to an entirely new level of sophistication.” Here, authors Guy Shockey and Francesco Cameli discuss the power of projects and take us behind the scenes of the new program

Decompression, Deep Stops and the Pursuit of Precision in a Complex World In this first of a four-part series, Global Underwater Explorers’ (GUE) founder and president Jarrod Jablonski explores the historical development of GUE decompression protocols, with a focus on technical diving and the evolving trends in decompression research.

  • Halcyon Sidemount
  • Subscribe for free
  • DIVE RITE
  • Area 9
Continue Reading

Trending

WordPress PopUp Plugin