Connect with us

Latest Features

Wreck in Depth: USS Saratoga (CV-3)

The third installment of our historical wreck series brought to you by shipwreck diving travel specialists at Dirty Dozen Expeditions. Are you ready to make the jump?



By Martin Cridge
Header image courtesy of US Navy

Marc Mitscher pulled the control stick of his aircraft to the side, bringing his plane around and lining up for the first ever aircraft landing on the USS Saratoga (CV-3). Stretched out below him was the 264 m/866 ft flight deck of the newly commissioned carrier.

Marc Mitscher on the deck of the USS Saratonga CV-3
Marc Mitscher on the deck of the USS Saratonga CV-3. Photo by US Navy.

Mitscher would go on to lead the U.S. Fast Carrier Task Force during World War II on a number of daring missions including Operation Hailstone, the fast carrier attack on Truk Lagoon in February 1944. But in January 1928, he was concentrating on bringing his aircraft safely down onto the flight deck of Saratoga. After his successful landing, the rest of his air group followed, and Saratoga went on to conduct her first shakedown cruise before heading to the Pacific via the Panama Canal. Although she was originally designed to pass through the canal, Saratoga knocked down a number of lamp posts on her way through the locks due to the large overhang of her flight deck. 

  • Subscribe for free
  • Area 9
  • Halcyon Sidemount

Saratoga would spend the rest of her career assigned to the Pacific Fleet, although she would occasionally take part in exercises or fleet reviews on the east coast during the interwar years. 

USS Saratoga (CV-3) transiting the Panama Canal on 4 March 1930
USS Saratoga (CV-3) transiting the Panama Canal on 4 March 1930. Photo by Naval History & Heritage Command.

Saratoga was laid down at the Camden, New Jersey yard of the New York Shipbuilding Corporation in September 1920, originally as a Lexington class battlecruiser. In February 1922, the Allies adopted the Washington Naval Treaty, which aimed to prevent a post-World War I arms race. The treaty placed restrictions on the number, size, and armament of certain naval vessels as well as which types of new vessels could be built. As a result of the treaty’s restrictions, the Navy scrapped their plans to build six Lexington class battlecruisers. Part of the treaty, however, allowed two vessels that were already under construction to be converted into aircraft carriers. 

USS Saratonga
USS Saratonga (CC-3) under construction, 1921. Photo courtesy of Wikimedia Commons.

So, on  July 1, 1922, the Navy selected Saratoga and her sister Lexington to become the fleet’s first aircraft carriers. Japan followed suit and converted the battlecruiser Akagi and the battleship Kaga into aircraft carriers. Aircraft carriers weren’t exempt from the Washington Naval Treaty’s limits on the size and armaments of naval ships. Per the treaty, the vessels were limited to 36,000 tons maximum standard displacement, which included 3,000 tons for antiaircraft and torpedo defenses. This benchmark proved difficult to achieve, and both the Saratoga and Lexington exceeded their limit while the treaty was in force.

USS Saratonga in a dry dock
USS Saratonga in a dry dock at the Puget Sound Naval Shipyard on 17 November 1930. Photo by US Navy.

Saratoga became the Navy’s first purpose-built fleet carrier to be launched when she glided down the slipway into the Delaware river on April 7, 1925. She was commissioned for the first time at the Philadelphia Navy Yard on November 16, 1927, and sailed for the first time under the command of Captain Harry E. Yarnell. While the original role of aircraft carriers was perceived to be fleet reconnaissance, anti-submarine patrol, and spotting for the big guns of capital ships, the  Navy spent the interwar period developing tactics and multi-mission capabilities of aircraft carriers through a number of fleet training exercises and war games. 

  • Area 9
  • Subscribe for free
  • Halcyon Sidemount

Naval Aviation grew to become a key component of fleet battle tactics and was constantly developed to improve and project the fleet’s strike power over the horizon. Other scenarios were played out in exercises that developed the Navy’s ability to attack other aircraft carriers and shore bases, as well as to offer support for amphibious operations. In one fleet problem exercise in 1938, Saratoga successfully launched a surprise air attack on Hawaii in what was an almost identical scenario to the Japanese attack in December 1941.

The Aftermath of Pearl Harbor

At the start of the Pacific war, when Japan attacked Pearl Harbor, Saratoga was in San Diego, having  just completed a dry dock and maintenance period. After embarking her air group, she managed to get underway within 24 hours of the Japanese attack for her first mission of the war—carrying reinforcements for the U.S. garrison on Wake Island. Ultimately, the mission was cancelled before Saratoga could reach Wake, and the island fell into Japanese hands.

View from directly opposite the damage showing torpedo bulkhead No. 1 and the forward edge of the hole. Photo by Naval History & Heritage Command.

In January 1942, the Japanese submarine I-6 torpedoed Saratoga for the first time, forcing her to return to the west coast for repairs. Returning to the fleet just before the Battle of Midway, the fighting was finished by the time she reached Pearl Harbor where she loaded replacement aircraft for both the Hornet and Enterprise so that they could replace the planes they lost in the battle.

Torpedo Damage Diagram. Photo by Naval History & Heritage Command.

By August 7, 1942, Saratoga was in the Solomon Islands supporting the U.S. offensive on Guadalcanal. At the end of August, Saratoga was torpedoed for a second time, this time by submarine I-26. After repairs at Pearl Harbor, Saratoga returned to the South Pacific.

Saratoga spent most of 1943 operating from Nouméa in New Caledonia supporting operations in and around the Solomons. She was, for a while, the only operational U.S. carrier in the Pacific. In November, Saratoga supported the U.S. offensive in the Gilbert Islands and Nauru before heading back to the west coast for a much needed refit.

January 1944 saw Saratoga back in action, this time supporting operations in the Marshall Islands before joining the British Eastern Fleet, which was operating in the Indian Ocean. During operations with the British, Saratoga carried out a number of successful raids on both Sumatra and Java during April and May.

In June that year,  the Saratoga was back in dry dock at the Bremerton yard in Washington, and when she emerged in September, she had a new, special role. Saratoga was chosen to develop night fighting tactics and to train pilots for night fighter operations.

Saratoga on fire after a kamikaze attack. Photo by US Navy.

In 1945, Saratoga returned to frontline duty, and in February was tasked to provide air cover for the amphibious landings on Iwo Jima. On February 21, she was hit by kamikaze planes and bombs in two separate attacks by the Japanese. Although the forward part of her flight deck was seriously damaged, she managed to recover her aircraft before retiring from the operation and returning to the U.S. for further repairs.

During the repairs, the Navy decided to convert Saratoga permanently into a training carrier. The aft aircraft elevator was welded in the up position and all its associated machinery was removed. A larger forward elevator was fitted and its operating machinery upgraded. Finally, parts of the hangar deck were converted into accommodations and classrooms. Saratoga spent the remaining months of the war as a training venue for pilots operating out of Pearl Harbor. 

Once the Japanese had surrendered, Saratoga took part in Operation Magic Carpet, the repatriation of American servicemen. In the end, she took over 29,000 American servicemen home, more than any other ship. Since Mitscher’s first landing in January 1928, over 98,500 planes had touched down on Saratoga’s flight deck, setting a U.S. Navy record. 

USS Saratoga (CV-3) during Operation Magic Carpet in 1945. Photo by US Navy.

As a result of technical advancements made during the war, the Saratoga had become obsolete, and she was selected to take part in Operation Crossroads, the first atomic tests at Bikini. She departed from the U.S. mainland for the last time on May 1, 1946, sailing out under the Golden Gate bridge from San Francisco for her date with destiny at Bikini Atoll.

For test Able, Saratoga was deliberately positioned some distance from the planned zero point so that she could be used later in test Baker. After the Able test she suffered some minor damage, mainly from fires on her teak-covered flight deck, but these were soon extinguished. 

  • Halcyon Sidemount
  • Subscribe for free
  • Area 9

Some of her crew even moved back onboard the ship for a couple of weeks while preparations for the Baker test were made. Despite being placed in the expected fatal zone for the Baker blast, some of these crew members left their kits and personal belongings onboard, believing the Saratoga wouldn’t sink.

But she did.

USS Saratonga (CV-3) sinking in Bikini Atoll, 25 July 1946. Photo by US Navy.

Diving One of the Largest Shipwrecks in the World 

As built, Saratoga‘s official standard displacement was 36,000 tons (43,055 tons full load), and she was 270 m/888 ft long. Modifications to the vessel in 1945 increased her full load displacement  to 49,552 tons and her overall length to 277 m/909 ft, making her one of the largest diveable shipwrecks in the world. 

The Saratoga now sits upright in 51 m/167 ft of water with the top of her superstructure reaching 18 m/60 ft and the flight deck averaging 27 m/90 ft. 

USS Saratonga schematic. Courtesy of Dirty Dozen.

First dives on the Saratoga are truly awe-inspiring. This is a big wreck, and just orienting yourself  can take a number of dives.

The effects of two atomic explosions, war damage, and general deterioration from over seventy years of resting on the lagoon bottom are now starting to show, with parts of her superstructure, hull, and flight deck collapsing in recent years. None of this, however, diminishes the impressive nature of this wreck.

After the Baker bomb exploded underneath LSM-60, the Saratoga was hit by a number of massive tidal waves which lifted the mighty vessel and smashed into her sides, causing serious damage to her side plating. Two million tons of coral, sand, and water were thrown up into the air by the explosion, which then came crashing down onto the flight deck.

Five-inch guns on the flight deck. Photo by Martin Cridge.

Saratoga was built with an unarmored flight deck. This maximized hangar space and was more easily repaired but was obviously not as strong as an armored deck. Although original reports by Navy divers after Saratoga sank said that the flight deck was largely intact, it was seriously dished from the aft elevator to the stern over the hangar deck area. It’s likely that it was seriously damaged and would have been unusable had the ship not sank. Now, large parts have collapsed onto the hangar deck below. 

A plane inside the collapsed flight deck of Saratoga. Photo by Aron Arngrimsson.

A number of planes and various pieces of military equipment were staged on the flight deck for the Baker test. The planes were all swept off the deck during the test, and the remains of some of them are now scattered around the Saratoga on the seabed, some still in surprisingly good condition. Planes were also stowed on the hangar deck, although these are now mostly inaccessible due to the collapse of the flight deck over the hangar. It’s still possible to see into the cockpits of some of them, but these planes are now, sadly, in poor condition. 

500-lbs bombs. Photo by Aron Arngrimsson.

Some of Saratoga’s main ship armaments were removed prior to Operation Crossroads, but a representative number were left onboard, including 2x twin 38 caliber 5″ dual purpose gun mounts, a number of single 5″ dual purpose gun mounts on the sponsons down each side of the ship, along with an array of 40mm Bofor and 20mm Oerlikon guns.

Lots of munitions were also onboard when the Saratoga was sunk. These include 159 kg/350 lb and 227 kg/500 lb bombs, air drop torpedoes, rockets, 5” gun cartridges, and depth charges, all of which can still be found scattered in and around the wreck today.

Forward of the forward aircraft elevator, the flight deck is still largely intact apart from a small area towards the bow. This is one of the  areas where Saratoga was hit when she was off Iwo Jima—in February 1945—and was hastily repaired. Now the damaged area allows access to the bow area under the flight deck, including the emergency radio room—with all of its vacuum tubes and dials—and the lamp locker with some lamps still in place.

Saratoga Bridge. Photo by Aron Arngrimsson.

Inside the Saratoga

The interior of the Saratoga is vast, and probably no more than 10% of the ship has been properly explored since her sinking. The Saratoga was heavily compartmentalized, and the majority of her watertight doors and hatches were closed when she sank, hindering today’s explorations. Most of the penetrations go forward from the forward elevator shaft at various levels.

Illustration of penetrations inside the elevator shaft. Photo by Aron Arngrimsson.

In some areas, permanent lines have been laid, but care is still needed, as a fine silt is present that is easily stirred up within most parts of the vessel. Needless to say, excellent buoyancy skills are a must to avoid silt outs, and divers need to be constantly aware of their surroundings. Divers with the necessary skills and experience who do venture inside are richly rewarded with a number of unique sights. A maze of passageways lead off in all directions to storerooms, workshops, galleys, pantries, mess decks, accommodation decks, and bathrooms.

Operation Station – Command Information Center on Saratoga. Photo by Martin Cridge.

You can visit the Command Information Center, the nerve center of the ship when it was operating at war. The cabins and bathrooms used by Admirals and Captains are nearby. Divers can visit the ready room where pilots were briefed on their upcoming missions, and the machine shops packed with lathes, grinding wheels, bench drills, and metal- and wood-working tools. Probably the most impressive area, however—especially for those not suffering from dental-phobia—is the dentist’s surgery and sickbay. Three dentist chairs sit in the surgery, complete with dental drills, instruments, and rinse bowls. Everything is almost perfectly preserved, and if it weren’t for the fine layer of silt covering everything, the room would look like it was just waiting to receive its next patient.

Dentistry in the Saratoga. Photo by Aron Arngrimsson.

Elsewhere on the ship, countless artifacts lay scattered around, including plates, bowls, jugs, Coca Cola, bottles, and other debris, much of which has laid untouched since 1946. In store rooms, shelves full of spare parts are still crammed with items including gauges, thermometers, valves, and fittings.

Two of the more interesting and unique items for divers to see are the U.S. Navy Mark V diving helmets and standard dress drysuits. The US Navy Mark V diving helmet is one of the most well known diving helmets in the world. First introduced in 1916, it was used until 1984 and can still be purchased new today.

Dive Helmets inside the dive locker on Saratoga. Photo by Aron Arngrimsson.

All too soon, however, it is time to head back to the surface. Instead of planes, divers can see reef sharks and eagle rays cruising up and down the flight deck and turtles munching on the coral and algae. Large shoals of jacks, trevally, and rainbow runners will swim around divers as they head back up the mooring line to the surface. While divers complete their deco, they will peer out into the blue to see if the tiger sharks will turn up, and often they do. If they are really lucky, some mantas may cruise by, or even the odd whale shark or tiger shark.

Tiger shark cruising around the deco bar. Photo by Aron Arngrimsson.

Capt. Martin Cridge—Without Martin The Dirty Dozen Expeditions wouldn’t exist. A few years back, Aron and Martin spent a full year diving together in Truk Lagoon. One evening, after a day of demanding dives, they sat, had a beer, and came up with their ideal CCR wreck dive itinerary.
The first ever Dirty Dozen trip was the result of that beer and the rest is history. Martin has lived in Truk for eight years with his family and works as the skipper of our expedition vessel in Truk and Bikini.

Subscribe for free

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *


Twenty-five Years in the Pursuit of Excellence – The Evolution and Future of GUE

Founder and president Jarrod Jablonski describes his more than a quarter of a century long quest to promote excellence in technical diving.




by Jarrod Jablonski. Images courtesy of J. Jablonski and GUE unless noted.

The most difficult challenges we confront in our lives are the most formative and are instrumental in shaping the person we become. When I founded Global Underwater Explorers (GUE), the younger version of myself could not have foreseen all the challenges I would face, but equally true is that he would not have known the joy, the cherished relationships, the sense of purpose, the rich adventures, the humbling expressions of appreciation from those impacted, or the satisfaction of seeing the organization evolve and reshape our industry. Many kindred souls and extraordinary events have shaped these last 25 years, and an annotated chronology of GUE is included in this issue of InDEPTH. This timeline, however, will fail to capture the heart behind the creation of GUE, it will miss the passionate determination currently directing GUE, or the committed dedication ready to guide the next 25 years.

Photo courtesy of Kirill Egorov

I don’t remember a time that I was not in, around, and under the water. Having learned to swim before I could walk, my mother helped infuse a deep connection to the aquatic world. I was scuba certified in South Florida with my father, and promptly took all our gear to North Florida where I became a dive instructor at the University of Florida. It was then that I began my infatuation with cave diving. I was in the perfect place for it, and my insatiable curiosity was multiplied while exploring new environments. I found myself with a strong desire to visit unique and hard-to-reach places, be they far inside a cave or deep within the ocean. 

My enthusiasm for learning was pressed into service as an educator, and I became enamored with sharing these special environments. Along with this desire to share the beauty and uniqueness of underwater caves was a focused wish to assist people in acquiring the skills I could see they needed to support their personal diving goals. It could be said that these early experiences were the seeds that would germinate, grow, mature, and bloom into the organizing principles for GUE.

Brent Scarabin, Jarrod and George “Trey” Irvine getting ready to dive.
Jarrod with his Halcyon PVR-BASC prototype.
George Irvine and Jarrod conducting the original DIR workshop.

The Pre-GUE Years

Before jumping into the formational days of GUE, allow me to help you visualize the environment that was the incubator for the idea that became GUE’s reality. By the mid-1990s, I was deeply involved in a variety of exploration activities and had been striving to refine my own teaching capacity alongside this growing obsession for exploratory diving. While teaching my open water students, I was in the habit of practicing to refine my own trim and buoyancy, noticing that the students quickly progressed and were mostly able to copy my position in the water. Rather than jump immediately into the skills that were prescribed, I started to take more time to refine their comfort and general competency. This subtle shift made a world of difference in the training outcomes, creating impressive divers with only slightly more time and a shift in focus. In fact, the local dive boats would often stare in disbelief when told these divers were freshly certified, saying they looked better than most open water instructors! 

Area 9

By this point in my career, I could see the problems I was confronting were more systemic and less individualistic. In retrospect, it seemed obvious that key principles had been missing in both my recreational and technical education, not to mention the instructor training I received. The lack of basic skill refinement seemed to occur at all levels of training, from the beginner to the advanced diver. Core skills like buoyancy or in-water control were mainly left for divers to figure out on their own and almost nobody had a meaningful emphasis on efficient movement in the water. It was nearly unheard of to fail people in scuba diving, and even delaying certification for people with weak skills was very unusual. This remains all too common to this day, but I believe GUE has shifted the focus in important ways, encouraging people to think of certification more as a process and less as a right granted to them because they paid for training. 

L2R: Jarrod Todd Kincaid and Rickard Lundgren plotting their 1999 Britannic expedition.

The weakness in skill refinement during dive training was further amplified by little-to-no training in how to handle problems when they developed while diving, as they always do. In those days, even technical/cave training had very little in the way of realistic training in problem resolution. The rare practice of failures was deeply disconnected from reality. For example, there was almost no realistic scenario training for things like a failed regulator or light. What little practice there was wasn’t integrated into the actual dive and seemed largely useless in preparing for real problems. I began testing some of my students with mock equipment failures, and I was shocked at how poorly even the best students performed. They were able to quickly develop the needed skills, but seeing how badly most handled their first attempts left me troubled about the response of most certified divers should they experience problems while diving, as they inevitably would. 

Diving Fatalities

Meanwhile, I was surrounded by a continual progression of diving fatalities, and most appeared entirely preventable. The loss of dear friends and close associates had a deep impact on my view of dive training and especially on the procedures being emphasized at that time within the community. The industry, in those early days, was wholly focused on deep air and solo diving. However, alarmingly lacking were clear bottle marking or gas switching protocols. It seemed to me to be no coincidence that diver after diver lost their lives simply because they breathed the wrong bottle at depth. Many others died mysteriously during solo dives or while deep diving with air. 

One of the more impactful fatalities was Bob McGuire, who was a drill sergeant, friend, and occasional dive buddy. He was normally very careful and focused. One day a small problem with one regulator caused him to switch regulators before getting in the water. He was using a system that used color-coded regulators to identify the gas breathed. When switching the broken regulator, he either did not remember or did not have an appropriately colored regulator. This small mistake cost him his life. I clearly remember turning that one around in my head quite a bit. Something that trivial should not result in the loss of a life. 

Also disturbing was the double fatality of good friends, Chris and Chrissy Rouse, who lost their lives while diving a German U-boat in 70 m/230 ft of water off the coast of New Jersey. I remember, as if the conversation with Chris were yesterday, asking him not to use air and even offering to support the cost as a counter to his argument about the cost of helium. And the tragedies continued: The loss of one of my closest friends Sherwood Schille, the death of my friend Steve Berman who lived next to me and with whom I had dived hundreds of times, the shock of losing pioneering explorer Sheck Exley, the regular stream of tech divers, and the half dozen body recoveries I made over only a couple years, which not only saddened me greatly, but also made me angry. Clearly, a radically different approach was needed.

  • Area 9

Learning to Explore

Meanwhile, my own exploration activities were expanding rapidly. Our teams were seeking every opportunity to grow their capability while reducing unnecessary risk. To that end, we ceased deep air diving and instituted a series of common protocols with standardized equipment configurations, both of which showed great promise in expanding safety, efficiency, and comfort. We got a lot of things wrong and experienced enough near misses to keep us sharp and in search of continual improvement. 

Casey McKinlay and Jarrod with stages and Gavin scooters in Wakulla Springs. Photo courtesy of David Rhea

But we looked carefully at every aspect of our diving, seeking ways to advance safety, efficiency, and all-around competency while focusing plenty of attention into the uncommon practice of large-scale, team diving, utilizing setup dives, safety divers, and inwater support. We developed diver propulsion vehicle (DPV) towing techniques, which is something that had not been done previously. We mostly ignored and then rewrote CNS oxygen toxicity calculations, developed novel strategies for calculating decompression time, and created and refined standard procedures for everything from bottle switching to equipment configurations. Many of these developments arose from simple necessity. There were no available decompression programs and no decompression tables available for the dives we were doing. Commonly used calculations designed to reduce the risk of oxygen toxicity were useless to our teams, because even our more casual dives were 10, 20, or even 30 times the allowable limit. The industry today takes most of this for granted, but in the early days of technical diving, we had very few tools, save a deep motivation to go where no one had gone before.

All in a dive of diving for the WKPP.

Many of these adventures included friends in the Woodville Karst Plain Project (WKPP), where I refined policies within the team and most directly with longtime dive buddy George Irvine. This “Doing it Right” (DIR) approach sought to create a more expansive system than Hogarthian diving, which itself had been born in the early years of the WKPP and was named after William Hogarth Main, a friend and frequent dive buddy of the time. By this point, I had been writing about and expanding upon Hogarthian diving for many years. More and more of the ideas we wanted to develop were not Bill Main’s priorities and lumping them into his namesake became impractical, especially given all the debate within the community over what was and was not Hogarthian. 

A similar move from DIR occurred some years later when GUE stepped away from the circular debates that sought to explain DIR and embraced a GUE configuration with standard protocols, something entirely within our scope to define.

These accumulating events reached critical mass in 1998. I had experienced strong resistance to any form of standardization, even having been asked to join a special meeting of the board of directors (BOD) for a prominent cave diving agency. Their intention was to discourage me from using any form of standard configuration, claiming that students should be allowed to do whatever they “felt’ was best. It was disconcerting for me, as a young instructor, to be challenged by pioneers in the sport; nevertheless, I couldn’t agree with the edict that someone who was doing something for the first time should be tasked with determining how it should be done. 

This sort of discussion was common, but the final straw occurred when I was approached by the head of a technical diving agency, an organization for which I had taught for many years. I was informed that he considered it a violation of standards not to teach air to a depth of at least 57 m/190 ft. This same individual told me that I had to stop using MOD bottle markings and fall in line with the other practices endorsed by his agency. Push had finally come to shove, and I set out to legitimize the training methods and dive protocols that had been incubating in my mind and refined with our teams over the previous decade. Years of trial and many errors while operating in dynamic and challenging environments were helping us to identify what practices were most successful in support of excellence, safety, and enjoyment.

Forming GUE

Forming GUE as a non-profit company was intended to neutralize the profit motivations that appeared to plague other agencies. We hoped to remove the incentive to train—and certify—the greatest number of divers as quickly as possible because it seemed at odds with ensuring comfortable and capable divers. The absence of a profit motive complemented the aspirational plans that longtime friend Todd Kincaid and I had dreamed of. We imagined a global organization that would facilitate the efforts of underwater explorers while supporting scientific research and conservation initiatives. 

I hoped to create an agency that placed most of the revenue in the hands of fully engaged and enthusiastic instructors, allowing them the chance to earn a good living and become professionals who might stay within the industry over many years. Of course, that required forgoing the personal benefit of ownership and reduced the revenue available to the agency, braking its growth and complicating expansion plans. This not only slowed growth but provided huge challenges in developing a proper support network while creating the agency I envisioned. There were years of stressful days and nights because of the need to forgo compensation and the deep dependance upon generous volunteers who had to fit GUE into their busy lives. If it were not for these individuals and our loyal members, we would likely never have been successful. Volunteer support and GUE membership have been and remain critical to the growing success of our agency. If you are now or have ever been a volunteer or GUE member, your contribution is a significant part of our success, and we thank you. 

Photo courtesy of Kirill Egorov

The challenges of the early years gave way to steady progress—always slower than desired, with ups and downs, but progress, nonetheless. Some challenges were not obvious at the outset. For example, many regions around the world were very poorly developed in technical diving. Agencies intent on growth seemed to ignore that problem, choosing whoever was available, and regardless of their experience in the discipline, they would soon be teaching. 

This decision to promote people with limited experience became especially problematic when it came to Instructor Trainers. People with almost no experience in something like trimix diving were qualifying trimix instructors. Watching this play out in agency after agency, and on continent after continent, was a troubling affair. Conversely, it took many years for GUE to develop and train people of appropriate experience, especially when looking to critical roles, including high-level tech and instructor trainers. At the same time, GUE’s efforts shaped the industry in no small fashion as agencies began to model their programs after GUE’s training protocols. Initially, having insisted that nobody would take something like Fundamentals, every agency followed suit in developing their own version of these programs, usually taught by divers that had followed GUE training. 

This evolving trend wasn’t without complexity but was largely a positive outcome. Agencies soon focused on fundamental skills, incorporated some form of problem-resolution training, adhered to GUE bottle and gas switching protocols, reduced insistence on deep air, and started talking more about developing skilled divers, among other changes. This evolution was significant when compared to the days of arguing about why a person could not learn to use trimix until they were good while diving deep on air. 

To be sure, a good share of these changes was more about maintaining business relevance than making substantive improvements. The changes themselves were often more style than substance, lacking objective performance standards and the appropriate retraining of instructors. Despite these weaknesses, they remain positive developments. Talking about something is an important first step and, in all cases, it makes room for strong instructors in any given agency to practice what is being preached. In fact, these evolving trends have allowed GUE to now push further in the effort to create skilled and experienced divers, enhancing our ability to run progressively more elaborate projects with increasingly more sophisticated outcomes. 

  • Halcyon Sidemount

The Future of GUE

The coming decades of GUE’s future appear very bright. Slow but steady growth has now placed the organization in a position to make wise investments, ensuring a vibrant and integrated approach. Meanwhile, evolving technology and a broad global base place GUE in a unique and formidable position. Key structural and personnel adjustments complement a growing range of virtual tools, enabling our diverse communities and representatives to collaborate and advance projects in a way that, prior to now, was not possible. Strong local communities can be easily connected with coordinated global missions; these activities include ever-more- sophisticated underwater initiatives as well as structural changes within the GUE ecosystem. One such forward-thinking project leverages AI-enabled, adaptive learning platforms to enhance both the quality and efficiency of GUE education. Most agencies, including GUE, have been using some form of online training for years, but GUE is taking big steps to reinvent the quality and efficiency of this form of training. This is not to replace, but rather to extend and augment inwater and in-person learning outcomes. Related tools further improve the fluidity, allowing GUE to seamlessly connect previously distant communities, enabling technology, training, and passion to notably expand our ability to realize our broad, global mission.

Photo courtesy of Kirill Egorov

Meanwhile, GUE and its range of global communities are utilizing evolving technologies to significantly expand the quality and scope of their project initiatives. Comparing the impressive capability of current GUE communities with those of our early years shows a radical and important shift, allowing results equal or even well beyond those possible when compared even with well-funded commercial projects. Coupled with GUE training and procedural support, these ongoing augmentations place our communities at the forefront of underwater research and conservation. This situation will only expand and be further enriched with the use of evolving technology and closely linked communities. Recent and planned expansions to our training programs present a host of important tools that will continue being refined in the years to come. Efforts to expand and improve upon the support provided to GUE projects with technology, people, and resources are now coming online and will undoubtedly be an important part of our evolving future.

The coming decades will undoubtedly present challenges. But I have no doubt that together we will not only overcome those obstacles but we will continue to thrive. I believe that GUE’s trajectory remains overwhelmingly positive, for we are an organization that is continually evolving—driven by a spirit of adventure, encouraged by your heartwarming stories, and inspired by the satisfaction of overcoming complex problems. Twenty-five years ago, when I took the path less traveled, the vision I had for GUE was admittedly ambitious. The reality, however, has exceeded anything I could have imagined. I know that GUE will never reach a point when it is complete but that it will be an exciting lifelong journey, one that, for me, will define a life well lived. I look forward our mutual ongoing “Quest for Excellence.”

See Listings Below For Additional Resources On GUE And GUE Diving!

Jarrod is an avid explorer, researcher, author, and instructor who teaches and dives in oceans and caves around the world. Trained as a geologist, Jarrod is the founder and president of GUE and CEO of Halcyon and Extreme Exposure while remaining active in conservation, exploration, and filming projects worldwide. His explorations regularly place him in the most remote locations in the world, including numerous world record cave dives with total immersions near 30 hours. Jarrod is also an author with dozens of publications, including three books.

A Few GUE Fundamentals

Similar to military, commercial and public safety divers, Global Underwater Explorers (GUE) is a standards-based diving community, with specific protocols, standard operating procedures (SOPs) and tools. Here are selected InDEPTH stories on some of the key aspects of GUE diving, including a four-part series on the history and development of GUE decompression procedures by founder and president Jarod Jablonski.

Anatomy of a Fundamentals Class

GUE Instructor Examiner Guy Shockey explains the thought and details that goes into GUE’s most popular course, Fundamentals, aka “Fundies,” which has been taken by numerous industry luminaries. Why all the fanfare? Shockey characterizes the magic as “simple things done precisely!

Back to Fundamentals: An Introduction to GUE’s Most Popular Diving Course

Instructor evaluator Rich Walker attempts to answer the question, “why is Fundamentals GUE’s most popular diving course?” Along the way, he clarifies some of the myths and misconceptions about GUE training. Hint: there is no Kool-Aid. 

The GUE Pre-dive Sequence

As you’d expect, Global Underwater Explorers (GUE) has a standardized approach to prepare your equipment for the dive, and its own pre-dive checklist: the GUE EDGE. Here explorer and filmmaker Dimitris Fifis preps you to take the plunge, GUE-style.

The Flexibility of Standard Operating Procedures

Instructor trainer Guy Shockey discusses the purpose, value, and yes, flexibility of standard operating procedures, or SOPs, in diving. Sound like an oxymoron? Shockey explains how SOPs can help offload some of our internal processing and situational awareness, so we can focus on the important part of the dive—having FUN!

Standard Gases: The Simplicity of Everyone Singing the Same Song

Like the military and commercial diving communities before them, Global Underwater Explorers (GUE) uses standardized breathing mixtures for various depth ranges and for decompression. Here British wrecker and instructor evaluator Rich Walker gets lyrical and presents the reasoning behind standard mixes and their advantages, compared with a “best mix” approach. Don’t worry, you won’t need your hymnal, though Walker may have you singing some blues.

Rules of Thumb: The Mysteries of Ratio Deco Revealed

Is it a secret algorithm developed by the WKPP to get you out of the water faster sans DCI, or an unsubstantiated decompression speculation promoted by Kool-Aid swilling quacks and charlatans? British tech instructor/instructor evaluator Rich Walker divulges the arcane mysteries behind GUE’s ratio decompression protocols in this first of a two part series.

The Thought Process Behind GUE’s CCR Configuration

Global Underwater Explorers is known for taking its own holistic approach to gear configuration. Here GUE board member and Instructor Trainer Richard Lundgren explains the reasoning behind its unique closed-circuit rebreather configuration. It’s all about the gas!

GUE and the Future of Open Circuit Tech Diving

Though they were late to the party, Global Underwater Explorers (GUE) is leaning forward on rebreathers, and members are following suit. So what’s to become of their open circuit-based TECH 2 course? InDepth’s Ashley Stewart has the deets.

Project Divers Are We

Diving projects, or expeditions—think Bill Stone’s Wakulla Springs 1987 project, or the original explorations of the Woodville Karst Plain’s Project (WKPP)—helped give birth to technical diving, and today continue as an important focal point and organizing principle for communities like Global Underwater Explorers (GUE). The organization this year unveiled a new Project Diver program, intended to elevate “community-led project dives to an entirely new level of sophistication.” Here, authors Guy Shockey and Francesco Cameli discuss the power of projects and take us behind the scenes of the new program

Decompression, Deep Stops and the Pursuit of Precision in a Complex World In this first of a four-part series, Global Underwater Explorers’ (GUE) founder and president Jarrod Jablonski explores the historical development of GUE decompression protocols, with a focus on technical diving and the evolving trends in decompression research.

  • Area 9
  • Subscribe for free
  • Halcyon Sidemount
Continue Reading


WordPress PopUp Plugin